Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Analysis
2.3. Contamination Factor, Enrichment Factor, Pollution Index, Bioaccumulation Factor
2.4. Statistical Analysis
3. Results and Discussion
3.1. Contents of N, P, K, As, and Heavy Metals in Soils
3.2. Bioaccumulation of the Studied Elements in Plant Species
3.3. Potential Risks Associated with the Consumption of Contaminated Plants
3.4. Phytoremediation Potential of Plant Species
4. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Iimura, K.; Ito, H.; Chino, M.; Morishita, T.; Hirata, H. Behavior of contaminant heavy metals in soil-plant system. In Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture, Tokyo, Japan, 10–17 October 1977; pp. 357–368. [Google Scholar]
- Förstner, U. Land Contamination by Metals: Global Scope and Magnitude of Problem. In Metal Speciation and Contamination of Soil; Allen, H.E., Huang, C.P., Bailey, G.W., Bowers, E.R., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 1–33. [Google Scholar]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Silvestre, J.; Pinelli, E.; Kallerhoff, J.; Kaemmerer, M.; Tarigo, A.; Shahid, M.; Guiresse, M.; Pradere, P.; Dumat, C. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 2008, 71, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Uzu, G.; Sobanska, S.; Sarret, G.; Munoz, M.; Dumat, C. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol. 2010, 427–428, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Ghaly, A.E.; Mahmoud, N.; Cote, R. Phytoaccumulation of heavy metals by aquatic plants. J. Environ. Int. 2004, 29, 1029–1039. [Google Scholar] [CrossRef]
- Selinus, O.; Alloway, B.J.; Centeno, J.A.; Finkelman, R.B.; Fuge, R.; Lindh, U.; Smedley, P. Essentials of Medical Geology: Impacts of the Natural Environment on Public Health; Elsevier Academic Press: Burlington, NJ, USA, 2005; 812p. [Google Scholar]
- Pahlsson, A.M.B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut. 1989, 47, 287–319. [Google Scholar] [CrossRef]
- Cecchi, M.; Dumat, C.; Alric, A.; Felix-Faure, B.; Pradere, P.; Guiresse, M. Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 2008, 144, 287–298. [Google Scholar] [CrossRef]
- Shahid, M.; Pinelli, E.; Pourrut, B.; Silvestre, J.; Dumat, C. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 2011, 74, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- MONRE (Ministry of Natural Resources and Environment of Vietnam). National State of Environment 2008: Vietnam Craft Village Environment; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2008; 98p.
- Chu, T.T.H. Survey on heavy metals contaminated soils in Thai Nguyen and Hung Yen provinces in Northern Vietnam. J. Viet. Environ. 2011, 1, 34–39. [Google Scholar]
- MONRE (Ministry of Natural Resources and Environment of Vietnam). Available online: http://www.monre.gov.vn/v35/default.aspx?tabid=428&CateID=24&ID=122169&Code=ZD5X122169 (accessed on 15 November 2013). (In Vietnamese)
- Pham, T.T.T.; Phan, T.P.; Nguyen, K.L.; Nguyen, T.K.O.; Ha, T.T.T.; Ho, T.O.; Nguyen, K.B.T.; Nguyen, T.M.T.; Do, T.T.T.; Nguyen, T.H.; et al. Status of heavy metal (Pb, Cd) pollution in agricultural soil in Dong Mai lead recycling craft village in Hung Yen, Vietnam. J. Viet. Environ. 2016, 8, 284–288. [Google Scholar]
- Phan, T.P.; Pham, T.T.T.; Nguyen, K.L.; Nguyen, T.K.O.; Ha, T.T.T.; Nguyen, K.B.T.; Chu, T.T.H. The impacts of lead recycling activities to human health and environment in Dong Mai craft village, Hung Yen, Vietnam. J. Viet. Environ. 2016, 8, 266–270. [Google Scholar]
- DONRE—Department of Natural Resources and Environment. Available online: http://new.hungyen.gov.vn/vi-vn/stnmt/Pages/Article.aspx?ChannelId=18&articleID=590 (accessed on 15 November 2013). (In Vietnamese)
- Belluck, D.A.; Benjamin, S.L.; David, S. Why remediate? In Phytoremediation of Metal-Contaminated Soils; Morel, J.L., Echevarria, G., Goncharova, N., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–23. [Google Scholar]
- Guemiza, K.; Coudert, L.; Metahni, S.; Mercier, G.; Besner, S.; Blais, J.F. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. J. Hazard. Mater. 2017, 333, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Li, J.; Xie, H.; Yuc, C. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef]
- Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563–564, 796–802. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Introduction to Phytoremediation; EPA/600/R-99/107; United States Environmental Protection Agency: Washington, DC, USA, 2000.
- Baker, A.J.M.; Walker, P.L. Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem. Spec. Bioavailab. 1989, 1, 7–17. [Google Scholar] [CrossRef]
- Malaisse, F.; Grégoire, J.; Brooks, R.R.; Morrison, R.S.; Reeves, R.D. Aeolanthus biformifolius: A hyperaccumulator of copper from Zaïre. Science 1978, 199, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D.; Brooks, R.R. Hyperaccumulation of lead and zinc by two metallophytes from a mining area in Central Europe. Environ. Pollut. 1983, 31, 277–287. [Google Scholar] [CrossRef]
- Kwon, J.C.; Nejad, Z.D.; Jung, M.C. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena 2016, 148, 92–100. [Google Scholar] [CrossRef]
- Obiora, S.C.; Chukwu, A.; Davies, T.C. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. J. Afr. Earth Sci. 2016, 116, 182–189. [Google Scholar] [CrossRef]
- Souza, E.S.; Texeira, R.A.; Costa, H.S.C.; Oliveira, F.J.; Melo, L.C.A.; Faial, K.C.F.; Fernandes, A.R. Assessment of risk to human health from simultaneous exposure to multiple contaminants in an artisanal gold mine in Serra Pelada, Pará, Brazil. Sci. Total Environ. 2017, 576, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Li, Z.A.; Zou, B.; Xia, H.P.; Wang, G. Heavy Metal Contamination in Soil and Soybean near the Dabaoshan Mine, South China. Pedosphere 2013, 23, 298–304. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tran, T.L.H.; Cao, V.H.; Nguyen, D.H.; Phan, Q.H.; Kurosawa, K.; Egashira, K. Uptake of Pb, Zn and Cu by roots and shoots of fast growing plants grown in contaminated soil in Vietnam. J. Soil Sci. Environ. Manag. 2013, 4, 108–115. [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2010; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2010. (In Vietnamese) [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2011; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2011. (In Vietnamese) [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2012; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2012. (In Vietnamese) [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2013; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2013. (In Vietnamese) [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2014; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2014. (In Vietnamese) [Google Scholar]
- Chi Dao Community People’s Committee. Annual Report 2015; Chi Dao Community People’s Committee: Hung Yen, Vietnam, 2015. (In Vietnamese) [Google Scholar]
- Foreign Affairs of Hung Yen Province. Van Lam District: Natural History. 2018. Available online: http://doingoaihungyen.vn/1016n/van-lam-district.html (accessed on 17 December 2018).
- Le, K.B. Flora of Vietnam: Asteraceae Dumort; Science and Technology Publishing House: Hanoi, Vietnam, 2007; Volume 7. (In Vietnamese) [Google Scholar]
- Nguyen, K.K. Flora of Vietnam: Cyperaceae Juss.; Science and Technology Publishing House: Hanoi, Vietnam, 2002; Volume 3. (In Vietnamese) [Google Scholar]
- Nguyen, T.D. Flora of Vietnam: Polygonaceae Juss.; Science and Technology Publishing House: Hanoi, Vietnam, 2007; Volume 11, pp. 185–186, 363. (In Vietnamese) [Google Scholar]
- Pham, H.H. An Illustrated Flora of Vietnam; TRE Publishing House: Hochiminh City, Vietnam, 1999; Volume I. (In Vietnamese) [Google Scholar]
- Pham, H.H. An Illustrated Flora of Vietnam, 2nd ed.; TRE Publishing House: Hochiminh City, Vietnam, 2000; Volume III. (In Vietnamese) [Google Scholar]
- Pham, H.H. An Illustrated Flora of Vietnam, 2nd ed.; TRE Publishing House: Hochiminh City, Vietnam, 2003; Volume II. (In Vietnamese) [Google Scholar]
- TCVN 6498:1999 (ISO 11261:1995)—Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 1999. (In Vietnamese)
- TCVN 8940:2011—Soil Quality—Determination of Total Phosphorus—Colorimetry Method; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2011. (In Vietnamese)
- TCVN 8660:2011—Soil Quality—Method for Determination of Total Potassium; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2011. (In Vietnamese)
- Lakanen, E.; Ervio, R. A comparison of eight extractants for determination of plant available micronutrients in soil. Acta Agraria Fennica 1971, 123, 223–232. [Google Scholar]
- US EPA 3052. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. 1996. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf (accessed on 25 December 2017).
- SMEWW 3125:2012—Standard Methods for the Examination of Water and Wastewater (Metals by Inductively Coupled Plasma/Mass Spectrometry); American Public Health Association: Washington, DC, USA, 2012.
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ. Monit. Assess. 2015, 187, 306. [Google Scholar] [CrossRef] [PubMed]
- QCVN 03-MT:2015/BTNMT—National Technical Regulation on the Allowable Limits of Heavy Metals in the Soils; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2015. (In Vietnamese)
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Nemerow, N.L. Stream, Lake, Estuary, and Ocean Pollution; Van Nostrand Reinhold: New York, NY, USA, 1991; 472p. [Google Scholar]
- Marrugo-Negrete, J.; Marrugo-Madrid, S.; Pinedo-Hernández, J.; Durango-Hernández, J.; Díez, S. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total Environ. 2016, 542, 809–816. [Google Scholar] [CrossRef] [PubMed]
- TCVN 7377:2004—Soils Quality—pH Value Index in the Soils of Vietnam; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2004. (In Vietnamese)
- TCVN 7373:2004—Sois Quality—Index Values of Total Nitrogen Content in the Soils of Vietnam; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2004. (In Vietnamese)
- TCVN 7374:2004—Soils Quality—Index Values of Phosphorus Content in the Soils of Vietnam; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2004. (In Vietnamese)
- TCVN 7375:2004—Soils Quality—Index Values of Total Potassium Content in the Soils of Vietnam; National Standard of Vietnam; Vietnam Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2004. (In Vietnamese)
- Rodríguez-Seijo, A.; Lago-Vila, M.; Andrade, M.L.; Vega, F.A. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ. Sci. Pollut. Res. 2016, 23, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, M.N.; Dultz, S.; Kasbohm, J. Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam. Agric. Ecosyst. Environ. 2009, 129, 8–16. [Google Scholar] [CrossRef]
- Zhang, L.; Verweij, R.A.; Van Gestel, C.A.M. Effect of soil properties on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus. Chemosphere 2019, 217, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Lenart, A.; Wolny-Koładka, K. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland Steelworks in Cracow. Bull. Environ. Contam. Toxicol. 2013, 90, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.K.; KrishnaRaj, S.; Dan, T.; Perras, M.R.; Vettakkorumakankav, N.N. Phytoremediation of heavy metal contaminated and polluted soils. In Heavy Metal Stress in Plants: From Molecules to Ecosystems; Prasad, M.N.V., Hagemeyer, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 305–329. [Google Scholar]
- Kamnev, A.A.; Van der Lelie, D. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 2000, 20, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Palacios, H.; Iribarren, I.; Olalla, M.J.; Cala, V. Lead poisoning of horses in the vicinity of a battery recycling plant. Sci. Total Environ. 2002, 290, 81–89. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Sakakibara, M.; Sano, S.; Nhuan, M.T. Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. J. Hazard. Mater. 2011, 186, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.A.; Peralta-Videa, J.R.; Ellzey, J.T.; Ren, M.; Viveros, M.N.; Gardea-Torresdey, J.L. Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ. Exp. Bot. 2010, 68, 139–148. [Google Scholar] [CrossRef]
- Pais, I.; Jones, J.B. The Handbook of Trace Elements; Saint Lucie Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Sigrist, M.E.; Brusa, L.; Beldomenico, H.R.; Dosso, L.; Tsendra, O.M.; González, M.B.; Pieck, C.L.; Verab, C.R. Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents. J. Environ. Chem. Eng. 2014, 2, 927–934. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vieira, B.R.C.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Arsenate and arsenite adsorption onto iron-coated cork granulates. Sci. Total Environ. 2018, 642, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- González-Chávez, M.C.A.; Carrillo-González, R.; Cuellar-Sánchez, A.; Delgado-Alvarado, A.; Suárez-Espinosa, J.; Ríos-Leal, E.; Solís-Domínguez, F.A.; Maldonado-Mendoza, I.E. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. Sci. Total Environ. 2019, 650, 3134–3144. [Google Scholar] [CrossRef] [PubMed]
- Pichtel, J.; Kuroiwa, K.; Sawyerr, H.T. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ. Poll. 2000, 110, 171–178. [Google Scholar] [CrossRef]
- Wasay, S.A.; Parker, W.J.; Van Geel, P.J. Contamination of a calcareous soil by battery industry wastes. I. characterization. Can. J. Civ. Eng. 2001, 28, 341–348. [Google Scholar] [CrossRef]
- Rodriguez, J.H.; Salazar, M.J.; Steffan, L.; Pignata, M.L.; Franzaring, J.; Klumpp, A.; Fangmeier, A. Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. J. Geochem. Explor. 2014, 145, 129–134. [Google Scholar] [CrossRef]
- Dang, T.A.; Chu, T.T.H.; Dao, T.C.T. Some characteristics of Flora of Pb-, Cd-polluted areas in Tan Long, Dong Hy, Thai Nguyen. In Proceedings of the 2nd National Scientific Conference on Ecology and Biological Resources (Sections of Fauna and Flora of Vietnam & Ecology and Environment), Hanoi, Vietnam, 26 October 2007; pp. 297–301. (In Vietnamese). [Google Scholar]
- Chu, T.T.H. Study on the growth and tolerance ability of Polygonum hydropiper L. and Hymenachne acutigluma (Steud.) Gilliland on Pb and Cd polluted soil. J. Viet. Environ. 2014, 6, 298–302. [Google Scholar]
- Nadgórska-Socha, A.; Kafel, A.; Kandziora-Ciupa, M.; Gospodarek, J.; Zawisza-Raszka, A. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.R. Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining; CAB International: Wallingford, UK, 1998; 380p. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M. Metal-accumulating Plants. In Phytoremediation of Toxic Metals; Raskin, I., Ensley, B.D., Eds.; Wiley: New York, NY, USA, 2000; pp. 193–221. [Google Scholar]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-polluted Soils. In Phytoremediation of Contaminated Soil and Water; Bañuelos, G., Terry, N., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2000; pp. 85–108. [Google Scholar]
- Reeves, R.D. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 2003, 249, 57–65. [Google Scholar] [CrossRef]
- Reeves, R.D. Hyperaccumulation of Trace Elements by Plants. In Phytoremediation of Metal-Contaminated Soils; Morel, J.L., Echevarria, G., Goncharova, N., Eds.; NATO Science Series: IV: Earth and Environmental Sciences; Springer: New York, NY, USA, 2006; p. 68. [Google Scholar]
- Van der Ent, A. Plant Diversity and Foliar Elemental Profiles in Relation to Soil Chemistry and Altitude on Ultramafic Edaphic Islands in Kinabalu Park (Malaysia). Ph.D. Thesis, The University of Queensland, St Lucia, Australia, 2013; 415p. [Google Scholar]
- Jiang, W.; Liu, D.; Hou, W. Hyperaccumulation of lead by roots, hypocotyls, and shoots of Brassica juncea. Biol. Plant. 2000, 43, 603–606. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Yang, J. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena 2017, 148, 67–73. [Google Scholar] [CrossRef]
- Diep, T.M.H.; Zarli, E.G. Lantana camara L., plant accumulating lead from soils for decontamination. Viet. J. Sci. Technol. Dev. 2007, 10, 13–23. [Google Scholar]
- Gupta, D.K.; Corpas, F.J.; Palma, J.M. Heavy Meatl Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18. [Google Scholar]
- Fryzova, R.; Pohanka, M.; Martinkova, P.; Cihlarova, H.; Brtnicky, M.; Hladky, J.; Kynicky, J. Oxidative Stress and Heavy Metals in Plants. Rev. Environ. Contam. Toxicol. 2018, 245, 129–156. [Google Scholar] [PubMed]
- Krzeslowska, M.; Lenartowska, M.; Mellerowicz, E.J.; Samardakiewicz, S.; Wozny, A. Pectinous cell wall thickenings formation—A response of moss protonemata cells to lead. Environ. Exp. Bot. 2009, 65, 119–131. [Google Scholar] [CrossRef]
- Krzesłowska, M.; Lenartowska, M.; Samardakiewicz, S.; Bilski, H.; Wozny, A. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—A remobilization can occur. Environ. Pollut. 2010, 158, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Meyers, D.E.R.; Auchterlonie, G.J.; Webb, R.I.; Wood, B. Uptake and localisation of lead in the root system of Brassica juncea. Environ. Pollut. 2008, 153, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Vadas, T.M.; Ahner, B.A. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ. Pollut. 2009, 157, 2558–2563. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Codex Alimentarius International Food Standards: General Standard for Contaminants and Toxins in Food and Feed; CXS193-1995; Food and Agriculture Organization of the United Nations: Rome, Italy, 1995. [Google Scholar]
- Dang, T.A.; Chu, T.T.H. The influence of heavy metal in soil and exposure time on metal accumulation by some leaf vegetables. In Proceedings of the 2005 National Conference on Life Sciences, Hanoi, Vietnam, 3 November 2005; pp. 361–363. (In Vietnamese). [Google Scholar]
- FAO/WHO. In Codex Alimentarius International Food Standards: General Standard for Contaminants and Toxins in Food and Feed; CXS193-1995, Adopted in 1995, Revised in 1997, 2006, 2008, 2009, Amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017, 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018.
- QCVN8-2:2011/BYT—National Technical Regulation on the Safety Limits of Heavy Metals Contaminants in Food; Vietnam Ministry of Health: Hanoi, Vietnam, 2011. (In Vietnamese)
- Fakhri, Y.; Bjørklund, G.; Bandpei, A.M.; Chirumbolo, S.; Keramatie, H.; Pouya, R.H.; Asadi, A.; Amanidaz, N.; Sarafraz AmirSheikhmohammad, M.; Alipour, M.; et al. Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xua, H.; Zhou, S.; Yu, Y.; Li, H.; Zhou, C.; Chen, Y.; Li, Y.; Wang, M.; Wang, G. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Ecotoxicol. Environ. Saf. 2018, 165, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Friedland, A.G. The Movement of Metals through Soils and Ecosystems. In Heavy Metal Tolerance in Plants: Evolutionary Aspects; Shaw, A.J., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 7–19. [Google Scholar]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Asher, C.J.; Kopittke, R.A.; Menzies, N.W. Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ. Pollut. 2008, 153, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Punamiya, P.; Datta, R.; Sarkar, D.; Barber, S.; Patel, M.; Das, P. Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J. Hazard. Mater. 2010, 177, 465–474. [Google Scholar] [CrossRef] [PubMed]
- European Academies. Opportunities for Soil Sustainability in Europe; Schaefer Druck und Verlag GmbH: Teutschenthal, Germany, 2018. [Google Scholar]
N0 | Latin Name of Plant Species | Native or Cultivated Plant | Family | Common Name | Number of Samples | Sampling Sites |
---|---|---|---|---|---|---|
1 | Barleria cristata L. | Native | Acanthaceae | Bluebell barleria | 3 | 4 |
2 | Brachiaria distachya (L.) Stapf. | Native * | Poaceae | Armgrass millet | 3 | 2, 4 |
3 | Colocasia esculenta (L.) Schott. | Cultivated | Araceae | Wild taro, dasheen | 3 | 5 |
4 | Commelina communis L. | Native * | Commelinaceae | Asiatic dayflower | 3 | 1, 4 |
5 | Cynodon dactylon (L.) Press. | Native * | Poaceae | Bermuda grass | 3 | 4 |
6 | Fimbristylis miliacea (L.) Vahl | Native | Cyperaceae | Hoorahgrass | 3 | 4 |
7 | Hymenachne acutigluma (Steud.) Gilliland | Native * | Poaceae | Dhal grass | 3 | 5 |
8 | Ipomoea aquatica Forssk. | Cultivated | Convolvulaceae | Water spinach | 6 | 4, 6 |
9 | Limnophila chinensis (Osb.) Merr. | Native ** | Scrophulariaceae | Ngo tia | 6 | 4, 5 |
10 | Ludwigia adscendens (L.) Hara | Native ** | Onagraceae | Water primrose | 3 | 4 |
11 | Oryza sativa L. | Cultivated | Poaceae | Rice | 6 | 3, 7 |
12 | Panicum repens L. | Native * | Poaceae | Torpedo grass | 3 | 4 |
13 | Paspalum conjugatum Berg. | Native * | Poaceae | Buffalo grass | 3 | 4 |
14 | Polygonum hydropiper L. | Native ** | Polygonaceae | Bite-tounge | 6 | 4, 6 |
15 | Sida rhombifolia L. | Native | Malvaceae | Arrowleaf sida | 3 | 4 |
Parameters | Sites | Allowable/Index Values * | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
pH | 7.1 ± 0.6 b | 6.3 ± 0.5 b | 4.9 ± 0.4 a | 4.9 ± 0.2 a | 5.0 ± 0.4 a | 5.2 ± 0.7 a | 4.8 ± 0.4 a | 4.11–7.57 1 |
Al (mg/kg) | 6200 ± 1300 b | 32,600 ± 5600 a | 21,500 ± 6700 a | 25,200 ± 6700 a | 23,300 ± 4400 a | 14,300 ± 4900 a,b | 23,400 ± 4200 a | - |
Fe (mg/kg) | 22,000 ± 4500 b | 42,300 ± 11,100 a | 34,600 ± 15,400 a | 29,100 ± 3700 a | 55,500 ± 7800 a | 32,100 ± 5600 a | 11,300 ± 1600 b | - |
As (mg/kg) | 10.9 ± 0.5 a,b | 15.3 ± 0.5 a,b | 10.9 ± 9.0 a,b | 11.6 ± 4.1 a,b | 26.8 ± 0.8 a | 16.0 ± 6.9 a,b | 5.4 ± 0.3 b | 15 2 |
Cr (mg/kg) | 60.7 ± 22.9 a | 43.4 ± 11.0 a | 84.8 ± 49.2 a | 49.6 ± 32.5 a | 290 ± 83 a | 114 ± 79 a | 24.9 ± 1.4 a | 150 2 |
Cu (mg/kg) | 143 ± 19 a,b | 101 ± 12 a,b | 105 ± 58 a,b | 84.0 ± 4.4 a,b | 251 ± 56 a | 104 ± 71 a,b | 66.0 ± 12.0 b | 100 2 |
Zn (mg/kg) | 455 ± 117 a,b | 333 ± 97 a,b | 223 ± 101 a,b | 228 ± 25 a,b | 392 ± 75 a | 223 ± 90 a,b | 143 ± 48 b | 200 2 |
Cd (mg/kg) | 1.24 ± 0.17 a | 1.35 ± 0.35 a | 0.71 ± 0.48 a | 0.87 ± 0.27 a | 1.67 ± 0.24 a | 0.76 ± 0.32 a | 0.93 ± 0.23 a | 1.5 2 |
Pb-Total (mg/kg) | 370 ± 126 b | 834 ± 234 b | 5050 ± 2200 a | 47,400 ± 43,100 c | 12,800 ± 4200 a,c | 977 ± 257 b | 419 ± 123 b | 70 2 |
Pb-Extractable (mg/kg) | 3.17 ± 0.17 b | 84.0 ± 5.7 a,c | 536 ± 252 a | 869 ± 213 a | 870 ± 83 a | 77.7 ± 60.0 c | 11.9 ± 1.0 b | - |
Total N (%N) | 0.19 ± 0.08 a | 0.19 ± 0.05 a | 0.23 ± 0.08 a | 0.34 ± 0.21 a | 0.27 ± 0.06 a | 0.23 ± 0.02 a | 0.29 ± 0.11 a | 0.095–0.27 3 |
Total P (%P2O5) | 0.37 ± 0.11 b | 0.24 ± 0.06 a | 0.13 ± 0.02c | 0.30 ± 0.08 a | 0.19 ± 0.03 a,c | 0.17 ± 0.0 5 a,c | 0.16 ± 0.08 a,c | 0.03–2.35 4 |
Total K (%K2O) | 1.23 ± 0.2 b | 2.25 ± 0.53 a,c | 1.90 ± 0.11 a,c | 1.66 ± 0.18 c | 1.84 ± 0.13 a | 2.17 ± 0.17 a,c | 2.27 ± 0.45 a,c | 0.03–2.35 5 |
Class. | Qualification | CF | EF |
---|---|---|---|
0 | Uncontaminated | CF < 1 | EF < 2 |
1 | Uncontaminated to moderately contaminated | ||
2 | Moderately contaminated | 1 < CF < 3 | 2 < EF < 5 |
3 | Moderately-heavily contaminated | ||
4 | Severely contaminated | 3 < CF < 6 | 5 < EF < 20 |
5 | Heavily contaminated | CF > 6 | 20 < EF < 40 |
6 | Extreme contaminated | EF > 40 |
Plant Species | Contents in the Shoots (mg/kg-DW) | BAF Values | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cr | Cu | Zn | Cd | Pb | As | Cr | Cu | Zn | Cd | Pb | Pb *** | |
Native Plant | |||||||||||||
B. cristata | 1.41 | 1.72 | 13.8 | 56.5 | 0.20 | 293 | 0.17 | 0.06 | 0.17 | 0.25 | 0.32 | 0.01 | 0.33 |
B. distachya * | 2.90 | 1.87 | 16.9 | 89.0 | 0.31 | 213 | 0.35 | 0.07 | 0.21 | 0.40 | 0.49 | 0.01 | 0.24 |
C. communis * | 1.18 | 1.80 | 11.0 | 96.6 | 0.26 | 594 | 0.14 | 0.06 | 0.14 | 0.43 | 0.41 | 0.02 | 0.68 |
C. dactylon * | 3.49 | 1.80 | 15.0 | 70.7 | 0.32 | 193 | 0.42 | 0.06 | 0.19 | 0.32 | 0.50 | 0.01 | 0.22 |
F. miliacea | 0.90 | 1.00 | 5.19 | 34.7 | 0.13 | 70.0 | 0.11 | 0.04 | 0.07 | 0.16 | 0.20 | 0.01 | 0.08 |
H. acutigluma * | 1.96 | 10.2 | 14.9 | 85.0 | 0.99 | 1160 | 0.07 | 0.04 | 0.06 | 0.22 | 0.59 | 0.09 | 1.34 |
L. chinensis ** | 1.20 | 2.20 | 10.1 | 165 | 0.50 | 600 | 0.13 | 0.07 | 0.12 | 0.77 | 0.68 | 0.01 | 0.69 |
L. adscendens ** | 0.94 | 1.30 | 14.5 | 63.2 | 0.44 | 308 | 0.09 | 0.04 | 0.17 | 0.31 | 0.55 | 0.01 | 0.36 |
P. repens * | 8.17 | 1.82 | 17.9 | 90.4 | 0.43 | 825 | 0.98 | 0.06 | 0.23 | 0.40 | 0.68 | 0.03 | 0.94 |
P. conjugatum * | 2.61 | 1.71 | 16.1 | 83.4 | 0.32 | 214 | 0.31 | 0.06 | 0.20 | 0.37 | 0.50 | 0.01 | 0.24 |
P. hydropiper ** | 10.2 | 2.20 | 23.8 | 92.4 | 0.68 | 798 | 1.10 | 0.07 | 0.29 | 0.43 | 0.92 | 0.02 | 0.92 |
S. rhombifolia | 1.09 | 1.09 | 14.1 | 44.4 | 0.21 | 269 | 0.13 | 0.04 | 0.18 | 0.20 | 0.33 | 0.01 | 0.31 |
Cultivated Plant | |||||||||||||
C. esculenta | 1.10 | 5.47 | 12.0 | 85.4 | 0.93 | 726 | 0.04 | 0.02 | 0.05 | 0.22 | 0.56 | 0.06 | 0.83 |
I. aquatica | 3.18 | 2.14 | 23.6 | 91.9 | 0.49 | 586 | 0.34 | 0.07 | 0.29 | 0.43 | 0.66 | 0.01 | 0.68 |
O. sativa (rice grains) | 0.14 | 1.32 | 3.73 | 39.4 | 0.06 | 2.83 | 0.03 | 0.06 | 0.06 | 0.27 | 0.11 | 0.01 | 0.09 |
Hyperaccumulation 1 | 1000 | 1000 | 1000 | 10,000 | 100 | 1000 | |||||||
Normal range 2 | 1.0–1.7 | - | 5–30 | 27–150 | 0.05–0.2 | 5–10 | |||||||
Toxic range 2 | 5–20 | - | 20–100 | 100–400 | 5–30 | 30–300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.T.T.; Vu, T.V.; Nguyen, T.K.B.; Nguyen, H.T.H. Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam. Minerals 2019, 9, 132. https://doi.org/10.3390/min9020132
Chu HTT, Vu TV, Nguyen TKB, Nguyen HTH. Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam. Minerals. 2019; 9(2):132. https://doi.org/10.3390/min9020132
Chicago/Turabian StyleChu, Ha T. T., Tu V. Vu, Tam K. B. Nguyen, and Ha T. H. Nguyen. 2019. "Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam" Minerals 9, no. 2: 132. https://doi.org/10.3390/min9020132
APA StyleChu, H. T. T., Vu, T. V., Nguyen, T. K. B., & Nguyen, H. T. H. (2019). Accumulation of Arsenic and Heavy Metals in Native and Cultivated Plant Species in a Lead Recycling Area in Vietnam. Minerals, 9(2), 132. https://doi.org/10.3390/min9020132