Genetic Damage in Workers from the Rare Metal Ore Production Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ethical Consideration
2.3. Participants
2.4. Buccal Micronucleus Cytome Assay
2.5. Physiological Indicators
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Protection against Radon-222 at Home and at Work; A Report of a Task Group of the International Commission on Radiological Protection; Pergamon: Oxford, UK, 1993; pp. 1–45.
- Tomasek, L.; Rogel, A.; Tirmarche, M.; Mitton, N.; Laurier, D. Lung cancer in French and Czech uranium miners: Radon-associated risk at low exposure rates and modifying effects of time since exposure and age at exposure. Radiat. Res. 2008, 169, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Cross, F.T.; Buschbom, R.L.; Brooks, A.L. inhaled radon-induced genotoxicity in wistar rat, syrian-hamster, and chinese-hamster deep-lung fibroblasts in-vivo. Mutat. Res.-Environ. Mutagen. Relat. Subj. 1995, 334, 131–137. [Google Scholar] [CrossRef]
- Goodhead, D.T. Understanding and characterisation of the risks to human health from exposure to low levels of radiation. Radiat. Prot. Dosim. 2009, 137, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Pelevina, I.I.; Afanasjev, G.G.; Aleshchenko, A.V.; Antoshchina, M.M.; Gotlib, V.Y.; Konradov, A.A.; Kudryashova, O.V.; Lizunova, E.Y.; Osipov, A.N.; Ryabchenko, N.I.; et al. Molecular and Cellular Consequences of the Chernobyl Accident. Radiat. Biol. Radioecol. 2011, 51, 154–164. [Google Scholar] [CrossRef]
- Natarajan, A.T. Reflections on a lifetime in cytogenetics. Mutat. Res.-Rev. Mut. Res. 2012, 751, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto-Hojo, E.T. Lessons from the accident with (137)Cesium in Goiania, Brazil: Contributions to biological dosimetry in case of human exposure to ionizing radiation. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2018, 836, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.N.; Sharma, T. Enhanced frequency of chromosome-aberrations in workers occupationally exposed to diagnostic x-rays. Mut. Res. 1991, 260, 343–348. [Google Scholar] [CrossRef]
- Balasem, A.N.; Ali, A.S.K.; Mosa, H.S.; Hussain, K.O. Chromosomal aberration analysis in peripheral lymphocytes of radiation workers. Mutat. Res. 1992, 271, 209–211. [Google Scholar] [CrossRef]
- Barquinero, J.F.; Barrios, L.; Caballin, M.R.; Miro, R.; Ribas, M.; Subias, A.; Egozcue, J. Cytogenetic analysis of lymphocytes from hospital workers occupationally exposed to low-levels of ionizing-radiation. Mutat. Res. 1993, 286, 275–279. [Google Scholar] [CrossRef]
- Brenner, D.J.; Miller, R.C.; Huang, Y.; Hall, E.J. The biological effectiveness of radon-progeny alpha-particles.3. quality factors. Radiat. Res. 1995, 142, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Hagelstrom, A.H.; Gorla, N.B.; Larripa, I.B. Chromosomal damage in workers occupationally exposed to chronic low-level ionizing-radiation. Toxicol. Lett. 1995, 76, 113–117. [Google Scholar] [CrossRef]
- Cardoso, R.S.; Takahashi-Hyodo, S.; Peitl, P.; Ghilardi-Neto, T.; Sakamoto-Hojo, E.T. Evaluation of chromosomal aberrations, micronuclei, and sister chromatid exchanges in hospital workers chronically exposed to ionizing radiation. Teratog. Carcinog. Mutagen. 2001, 21, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, D.; Preoteasa, V.; Petrescu, A.I. Incidence of radiation-induced micronuclei in occupationally exposed subjects. Romanian J. Biophys. 2007, 17, 119–128. [Google Scholar]
- Abo-Elmagd, M.; Daif, M.M.; Eissa, H.M. Cytogenetic effects of radon inhalation. Radiat. Meas. 2008, 43, 1265–1269. [Google Scholar] [CrossRef]
- Zolzer, F.; Skalicka, Z.F.; Havrankova, R.; Hon, Z.; Navratil, L.; Rosina, J.; Skopek, J. Enhanced frequency of micronuclei in lymphocytes from current as opposed to former uranium miners. J. Appl. Biomed. 2011, 9, 151–156. [Google Scholar] [CrossRef]
- Shukla, P.C.; Singh, K.K.; Yanagawa, B.; Teoh, H.; Verma, S. DNA damage repair and cardiovascular diseases. Can. J. Cardiol. 2010, 26, 13–16. [Google Scholar] [CrossRef]
- De Flora, S.; Izzotti, A. Mutagenesis and cardiovascular diseases Molecular mechanisms, risk factors, and protective factors. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2007, 621, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Aragno, M.; Mastrocola, R.; Alloatti, G.; Vercellinatto, I.; Bardini, P.; Geuna, S.; Catalano, M.; Danni, O.; Boccuzzi, G. Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 2008, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Ansley, D.M.; Wang, B.H. Oxidative stress and myocardial injury in the diabetic heart. J. Pathol. 2013, 229, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Ingel, F.I. Perspectives of micronuclear test in human lymphocytes cultivated in cytogenetic block conditions. Part 1: Cell proliferation. Ecol. Genet. 2006, 3, 7–20. [Google Scholar] [CrossRef]
- Pelevina, I.I.; Oradovskaya, I.V.; Mansurova, Y.G.; Aleschenko, A.V.; Antoschina, M.M.; Kudriashova, O.V.; Lizunova, E.Y.; Nikonova, M.F.; Osipov, A.N.; Ryabchenko, N.I.; et al. The Connection Between Molecular Cellular Parameters and Immune Status of Liquidators after Chernobyl Accident. Radiat. Biol. Radioecol. 2010, 50, 501–509. [Google Scholar]
- Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zeiger, E.; Knasmueller, S.; Fenech, M. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat. Res.-Rev. Mutat. Res. 2008, 659, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Ugolini, D.; Kirsch-Volders, M.; Stromberg, U.; Vermeulen, R.; Tucker, J.D. Human population studies with cytogenetic biomarkers: Review of the literature and future prospectives. Environ. Mol. Mutagen. 2005, 45, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Coskun, E.; Ceppi, M.; Lando, C.; Bolognesi, C.; Burgaz, S.; Holland, N.; Kirsh-Volders, M.; Knasmueller, S.; Zeiger, E.; et al. The HUMAN Micronucleus project on exfoliated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat. Res.-Rev. Mutat. Res. 2011, 728, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Melnik, N.A.; Ikkonen, P.V. Studying of the main sources of radiation at the enterprise for production the rare metals ores. Surv. Samara Sci. Cent. Russ. Acad. Sci. 2012, 5, 802–805. [Google Scholar]
- Report on the State and Protection of the Environment of the Murmansk Region in 2013; Ministry of Natural Resources and Ecology of Murmansk: Murmansk, Russia, 2014.
- Tolbert, P.E.; Shy, C.M.; Allen, J.W. Micronuclei and other nuclear anomalies in buccal smears - methods development. Mutat. Res. 1992, 271, 69–77. [Google Scholar] [CrossRef]
- Ware, J.E. SF-36 health survey update. Spine 2000, 25, 3130–3139. [Google Scholar] [CrossRef] [PubMed]
- Doskin, V.A.; Lavrent’eva, N.A.; Strongina, O.M.; Sharaĭ, V.B. “SAN” psychological test applicable to studies in the field of work physiology. Gigiena Truda Professional’nye Zabolevaniia 1975, 5, 28–35. [Google Scholar]
- Spielberg, T.E. Treating depression and anxiety in primary care. N. Engl. J. Med. 1992, 327, 731. [Google Scholar] [PubMed]
- Korkushko, O.V. Clinical Cardiology in Geriatrics; Medicine: Moscow, Russia, 1980; Volume 288, p. 288. [Google Scholar]
- Thomas, P.; Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zeiger, E.; Knasmueller, S.; Fenech, M. Buccal micronucleus cytome assay. Nat. Protoc. 2009, 4, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability—Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- The System of Complex Computer Studies of the Functional State of the Human Body “Omega-M”; Dinamika: St. Petersburg, Russia, 2010; p. 71.
- Petrashova, D.A.; Burtsev, A.V. Development of a database for the micronucleus test upon human cells. Her. Kola Sci. Cent. RAS 2016, 2, 124–136. [Google Scholar]
- Ramirez, A.; Saldanha, P.H. Micronucleus investigation of alcoholic patients with oral carcinomas. Genet. Mol. Res. (GMR) 2002, 1, 246–260. [Google Scholar] [PubMed]
- Poly-Organized Micro-Nucliear Test in Ecological and Hygienic Researches; Genius Media: Frauenfeld, Switzerland, 2007; p. 312.
- Torres-Bugarin, O.; Zavala-Cerna, M.G.; Nava, A.; Flores-Garcia, A.; Ramos-Ibarra, M.L. Potential Uses, Limitations, and Basic Procedures of Micronuclei and Nuclear Abnormalities in Buccal Cells. Dis. Mark. 2014. [Google Scholar] [CrossRef] [PubMed]
- Krivtsova, E.K.; Yurchenko, V.V.; Ingel, F.; Urtseva, N.A.; Makarova, A.S. Buccal micronucleus cytome assay in the system of the hygienic evaluation of learning conditions of students of different faculties of the same university. Gigiena Sanitaria (Hyg. Sanitat. Russ. J.) 2018, 97, 179–188. [Google Scholar] [CrossRef]
- Torres-Bugarin, O.; Anda-Casillas, A.D.; Ramirez-Munoz, M.P.; Sanchez-Corona, J.; Cantu, J.M.; Zuniga, G. Determination of diesel genotoxicity in firebreathers by micronuclei and nuclear abnormalities in buccal mucosa. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 1998, 413, 277–281. [Google Scholar] [CrossRef]
- Cassini, C.; Calloni, C.; Bortoloni, G.; Garcta, S.C.; Dornelles, M.A.; Henriques, J.A. Occupational risk assessment of oxidative stress and genotoxicity in workers exposed to paints during a working week. Int. J. Occup. Med. Environ. Health. 2011, 24, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Angelieri, F.; Moleirinho, T.D.G.; Carlin, V.; Oshima, C.T.F.; Ribeiro, D.A. Biomonitoring of oral epithelial cells in smokers and non-smokers submitted to panoramic X-ray: Comparison between buccal mucosa and lateral border of the tongue. Clin. Oral Investig. 2010, 14, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Sycheva, L.P. Biological value, scoring criteria and limits of a variation of a full spectrum karyological indexes of exfoliated cells for estimation of human cytogenetic status. Med. Genet. 2007, 6, 3–12. [Google Scholar]
- Nersesyan, A.K. Nuclear buds in exfoliated human cells. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2005, 588, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Garcia, L.; Montero-Montoya, R. Micronuclei and chromatid buds are the result of related genotoxic events. Environ. Mol. Mutagen. 2001, 38, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Montero, R.; Serrano, L.; Davila, V.; Segura, Y.; Arrieta, A.; Fuentes, R.; Abad, I.; Valencia, L.; Sierra, P.; Camacho, R. Metabolic polymorphisms and the micronucleus frequency in buccal epithelium of adolescents living in an urban environment. Environ. Mol. Mutagen. 2003, 42, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Zeljezic, D.; Garaj-Vrhovac, V. Chromosomal aberrations, micronuclei and nuclear buds induced in human lymphocytes by 2,4-dichlorophenoxyacetic acid pesticide formulation. Toxicology 2004, 200, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Crott, J.W. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes—Evidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2002, 504, 131–136. [Google Scholar] [CrossRef]
- Shimizu, N.; Itoh, N.; Utiyama, H.; Wahl, G.M. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J. Cell Biol. 1998, 140, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Gadhia, P.K.; Thumbar, R.P.; Kevadiya, B. Cytome Assay of Buccal Epithelium for Bio-monitoring Genotoxic Assessment of Benzene Exposure among Petrol Pump Attendants. Int. J. Hum. Genet. 2010, 10, 239–245. [Google Scholar] [CrossRef]
- Celik, A.; Yildirim, S.; Ekinci, S.Y.; Tasdelen, B. Bio-monitoring for the genotoxic assessment in road construction workers as determined by the buccal micronucleus cytome assay. Ecotoxicol. Environ. Saf. 2013, 92, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, D.; Nunes, E.; Sarmento, M.; Porto, C.; dos Santos, C.E.I.; Dias, J.F.; da Silva, J. Genetic damage in soybean workers exposed to pesticides: Evaluation with the comet and buccal micronucleus cytome assays. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2013, 752, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.V.; Tolochko, T.A.; Litvin, A.V.; Minina, V.I.; Kulemin, Y.E. Karyological status of buccal epithelial cells of miners with occupational lung pathologies. Gigiena Sanitaria (Hyg. Sanitat. Russ. J.) 2018, 97, 220–225. [Google Scholar] [CrossRef]
- Shimizu, N.; Kamezaki, F.; Shigematsu, S. Tracking of microinjected DNA in live cells reveals the intracellular behavior and elimination of extrachromosomal genetic material. Nucleic Acids Res. 2005, 33, 6296–6307. [Google Scholar] [CrossRef] [PubMed]
- Norppa, H.; Renzi, L.; Lindholm, C. Detection of whole chromosomes in micronuclei of cytokinesis-blocked human-lymphocytes by antikinetochore staining and in-situ hybridization. Mutagenesis 1993, 8, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Vral, A.; Thierens, H.; De Ridder, L. In vitro micronucleus-centromere assay to detect radiation-damage induced by low doses in human lymphocytes. Int. J. Radiat. Biol. 1997, 71, 61–68. [Google Scholar] [PubMed]
- Ramirez, M.J.; Surralles, J.; Galofre, P.; Creus, A.; Marcos, R. FISH analysis of1cen–1q12 breakage, chromosome 1 numerical abnormalities and centromericcontent of micronuclei in buccal cells from thyroid cancer and hyperthyroidismpatients treated with radioactive iodine. Mutagenesis 1999, 14, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, A.; Kowalska, M.; Bouzyk, E.; Buraczewska, I.; Kobialko, G.; Jarocewicz, N.; Szumiel, I. Validation of the micronucleus-centromere assay for biological dosimetry. Genet. Mol. Biol. 2000, 23, 1083–1085. [Google Scholar] [CrossRef]
- Kryscio, A.; Muller, W.U.U.; Wojcik, A.; Kotschy, N.; Grobelny, S.; Streffer, C. A cytogenetic analysis of the long-term effect of uranium mining on peripheral lymphocytes using the micronucleus-centromere assay. Int. J. Radiat. Biol. 2001, 77, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Van Schooten, F.J.; Nia, A.B.; De Flora, S.; D’Agostini, F.; Izzotti, A.; Camoirano, A.; Balm, A.J.M.; Dallinga, J.W.; Bast, A.; Haenen, G.; et al. Effects of oral administration of N-acetyl-L-cysteine: A multi-biomarker study in smokers. Cancer Epidemiol. Biomark. Prev. 2002, 11, 167–175. [Google Scholar]
- Schwartz, J.L.; Muscat, J.E.; Baker, V.; Larios, E.; Stephenson, G.D.; Guo, W.; Xie, T.P.; Gu, X.B.; Chung, F.L. Oral cytology assessment by flow cytometry of DNA adducts, aneuploidy, proliferation and apoptosis shows differences between smokers and non-smokers. Oral Oncol. 2003, 39, 842–854. [Google Scholar] [CrossRef]
- Thierens, H.; Vral, A. The micronucleus assay in radiation accidents. Annali Dell Istituto Superiore Sanita 2009, 45, 260–264. [Google Scholar]
- Diler, S.B.; Celik, A. Cytogenetic Biomonitoring of Carpet Fabric Workers Using Micronucleus Frequency, Nuclear Changes, and the Calculation of Risk Assessment by Repair Index in Exfoliated Mucosa Cells. DNA Cell Biol. 2011, 30, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R. The comet assay for DNA damage and repair - Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Azqueta, A.; Slyskova, J.; Langie, S.A.S.; Gaivao, I.O.; Collins, A. Comet assay to measure DNA repair: Approach and applications. Front. Genet. 2014, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Coronas, M.V.; Pereira, T.S.; Rocha, J.A.V.; Lemos, A.T.; Fachel, J.M.G.; Salvadori, D.M.F.; Vargas, V.M.F. Genetic biomonitoring of an urban population exposed to mutagenic airborne pollutants. Environ. Int. 2009, 35, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.A.D.; Garcia, E.M.; de Almeida, K.A.; Fernandes, C.F.L.; Tavella, R.A.; Soares, M.C.F.; Baisch, P.R.M.; Muccillo-Baisch, A.L.; da Silva, F.M.R. Genotoxicity in adult residents in mineral coal region-a cross-sectional study. Environ. Sci. Pollut. Res. 2017, 24, 16806–16814. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.M.R.; Tavella, R.A.; Fernandes, C.L.F.; Soares, M.C.F.; de Almeida, K.A.; Garcia, E.M.; Pinto, E.A.D.; Baisch, A.L.M. Genotoxicity in Brazilian coal miners and its associated factors. Hum. Exp. Toxicol. 2018, 37, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Brodskii, V.I.; Uryvaeva, I.V. Cell Polyploidy, Proliferation and Differentiation; Science: Moscow, Russia, 1981; p. 237. [Google Scholar]
- Koss, L.G. Diagnostic Cytology and Its Histopathologic Bases; J.B. Lippincott Co.: Philadelphia, PA, USA; Toronto, ON, Canada, 1979; Volume 2, p. 1266. [Google Scholar]
- Iurchenko, V.V. Cytogenetic disorders in the human cheek epithelium during exposure to genotoxicants. Toxicol. Bull. 2005, 6, 14–21. [Google Scholar]
- Gondareva, L.N.; Kulkybaev, G.A.; Mindubaeva, F.A. Prognostic assessment of the development of professional adaptation in miners of coal mines. Occup. Health Ind. Ecol. 2000, 1, 10–13. [Google Scholar]
- Thakur, V.; Richards, R.; Reisin, E. Obesity, hypertension, and the heart. Am. J. Med. Sci. 2001, 321, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Martynova, A.; Pryanichnikov, S.V.; Mikhailov, R.E.; Belisheva, N. Features of Heart rate variability of mining production workers in the Murmansk region. Hum. Ecol. 2017, 3, 31–38. [Google Scholar]
- Pomeranz, B.; Macaulay, R.J.B.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart-rate spectral-analysis. Am. J. Physiol. 1985, 248, H151–H153. [Google Scholar] [CrossRef] [PubMed]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency-domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Anokhin, P.K. Principles of System Organization of Functions; Nauka: Moscow, Russia, 1973; p. 316. [Google Scholar]
- Mullner, E.; Brath, H.; Nersesyan, A.; Nitz, M.; Petschnig, A.; Wallner, M.; Knasmuller, S.; Wagner, K.H. Nuclear anomalies in exfoliated buccal cells in healthy and diabetic individuals and the impact of a dietary intervention. Mutagenesis 2014, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Andreassi, M.G.; Barale, R.; Iozzo, P.; Picano, E. The association of micronucleus frequency with obesity, diabetes and cardiovascular disease. Mutagenesis 2011, 26, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Berkers, C.R.; Maddocks, O.D.K.; Cheung, E.C.; Mor, I.; Vousden, K.H. Metabolic Regulation by p53 Family Members. Cell Metab. 2013, 18, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Xiao, C.Y.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.H.; Wang, X.X.; Laurent, G.; German, N.J.; et al. SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell 2013, 23, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Guarente, L. NAD(+) and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Barouch, L.A.; Gao, D.Q.; Chen, L.; Miller, K.L.; Xu, W.H.; Phan, A.C.; Kittleson, M.M.; Minhas, K.M.; Berkowitz, D.E.; Wei, C.M.; et al. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ. Res. 2006, 98, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Rohr, P.; da Silva, J.; da Silva, F.R.; Sarmento, M.; Porto, C.; Debastiani, R.; dos Santos, C.E.I.; Dias, J.F.; Kvitko, K. Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay. Environ. Mol. Mutagen. 2013, 54, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Leon-Mejia, G.; Quintana, M.; Debastiani, R.; Dias, J.; Espitia-Perez, L.; Hartmann, A.; Henriques, J.A.P.; Da Silva, J. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol. Environ. Saf. 2014, 107, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, G.; Bognar, G.; Koteles, G.J. Long-term persistence of chromosome aberrations in uranium miners. J. Occup. Health 2004, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Zolzer, F.; Hon, Z.; Skalicka, Z.F.; Havrankova, R.; Navratil, L.; Rosina, J.; Skopek, J. Persistence of Genetic Damage in Lymphocytes from Former Uranium Miners. Cytogenet. Genome Res. 2012, 136, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.W.; Blanchardon, E.; Gregoratto, D.; Hofmann, W.; Karcher, K.; Nosske, D.; Tomasek, L. Dosimetric calculations for uranium miners for epidemiological studies. Radiat. Prot. Dosim. 2012, 149, 371–383. [Google Scholar] [CrossRef] [PubMed]
Parameters | All Miners | Young Miners | Non-Exposed Group |
---|---|---|---|
n | 236 | 48 | 33 |
age | 43.7 ± 0.81 | 26.3 ± 0.35 | 25.9 ± 0.27 |
Time of mining service, ages | 15.7 ± 0.82 | 4.0 ± 0.34 | - |
Consumption of cigarettes | |||
yes not anymore no | 67.4% (159) 6.4% (15) 26.3% (62) | 79.2% (38) 4.2% (2) 16.7% (8) | 78.8% (26) 0 21.2% (7) |
Consumption of alcoholic beverage | |||
every day weekly seldom no | 0.4% (1) 21.6% (51) 73.3% (173) 4.7% (11) | 2.1% (1) 22.9% (11) 72.9% (35) 2.1% (1) | 0 12.1% (4) 81.8% (27) 6.1% (2) |
Catch cold in the last month | |||
yes no | 25% (59) 75% (177) | 47.9% (23) 52.1% (25) | 39.4% (13) 60.6% (20) |
Consumption of antibiotic in the last month | |||
yes no | 7.6% (18) 92.4% (218) | 16.7% (8) 83.3% (40) | 3.0% (1) 97% (32) |
Consumption of vitamins in the last month | |||
yes no | 32.6% (77) 67.4% (159) | 29.2% (14) 70.8% (34) | 0 100% (33) |
Exposure to medical radiation in the last 6 months | |||
yes no | 7.2% (17) 92.8% (219) | 2.1% (1) 97.9% (47) | 0 100% (33) |
Parameters | All Miners | Young Miners | Non-Exposed Group |
---|---|---|---|
n, all n, no vitamins and medical X-ray | 236 147 | 48 33 | 33 |
Micronuclei, ‰ | 7.9 ± 0.54 ** 8.1 ± 0.66 *** | 8.3 ± 1.08 ** 9.3 ± 1.28 *** | 3.3 ± 0.49 |
Nuclear bud, ‰ | 0.9 ± 0.26 *** 1.0 ± 0.38 ** | 0.8 ± 0.30 * 0.6 ± 0.26 * | 4.0 ± 1.15 |
Broken egg, ‰ | 0.1 ± 0.05 0 | 0.2 ± 0.14 0.2 ± 0.06 | 0.4 ± 0.16 |
Two nuclei, ‰ | 4.9 ± 0.49 2.3 ± 0.58 | 3.4 ± 0.67 3.8 ± 0.87 | 3.5 ± 0.57 |
Double nuclei, ‰ | 1.2 ± 0.22 1.2 ± 0.30 | 1.2 ± 0.60 0.8 ± 0.71 | 0.7 ± 0.19 |
Condensed chromatin, % | 11.8 ± 0.54 *** 12.2 ± 0.67 *** | 12.0 ± 1.11 *** 12.5 ± 1.31 *** | 3.9 ± 0.64 |
Karyorrhexis, % | 0.8 ± 0.07 *** 0.7 ± 0.09 *** | 0.7 ± 0.10 *** 0.7 ± 0.12 *** | 0.2 ± 0.05 |
Piknosis, % | 1.5 ± 0.06 *** 1.4 ± 0.08 *** | 1.6 ± 0.13 *** 1.6 ± 0.20 *** | 0.5 ± 0.10 |
Kariolisis, % | 52.1 ± 1.16 *** 51.7 ± 1.49 *** | 49.5 ± 2.59 *** 50.3 ± 3.02 *** | 76.1 ± 3.21 |
Apoptotic bodies, % | 5.1 ± 0.59 ** 5.1 ± 0.64 ** | 6.7 ± 2.03 ** 4.4 ± 0.97 * | 2.3 ± 0.59 |
Repair index, RI | 6.2 ± 0.36 ** 6.4 ± 0.44 ** | 6.1 ± 0.74 ** 5.8 ± 0.81 ** | 14.9 ± 2.90 |
Parameters | Miners >30 yr | Miners <30 yr |
---|---|---|
n | 98 | 32 |
Age, yr | 47.8 ± 0.99 *** | 26.5 ± 0.41 |
Heart rate, beat/min | 80.3 ± 1.27 | 82.9 ± 2.35 |
Systolic blood pressure | 126.3 ± 1.04 *** | 118.4 ± 1.09 |
Diastolic blood pressure | 85.2 ± 0.79 *** | 78.0 ± 1.18 |
Growth, cm | 176.2 ± 0.7 | 178.8 ± 1.17 |
Weight, kg | 82.5 ± 1.36 | 77.4 ± 2.30 |
Body mass index, kg/m2 | 26.6 ± 0.38 *** | 24.1 ± 0.64 |
Stress index, c.u. | 257.8 ± 22.28 *** | 155.9 ± 21.98 |
Level of Body Adaptation | 32.9 ± 2.34 *** | 54.1 ± 4.56 |
Vegetative regulation index | 41.7 ± 2.70 ** | 59.2 ± 5.25 |
Central Regulation Indicator | 38.7 ± 2.23 ** | 53.5 ± 4.08 |
Psycho-emotional state | 40.1 ± 2.15 * | 57.1 ± 3.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrashova, D.; Martynova, A.; Megorskiy, V. Genetic Damage in Workers from the Rare Metal Ore Production Region. Minerals 2019, 9, 135. https://doi.org/10.3390/min9020135
Petrashova D, Martynova A, Megorskiy V. Genetic Damage in Workers from the Rare Metal Ore Production Region. Minerals. 2019; 9(2):135. https://doi.org/10.3390/min9020135
Chicago/Turabian StylePetrashova, Dina, Alla Martynova, and Vladimir Megorskiy. 2019. "Genetic Damage in Workers from the Rare Metal Ore Production Region" Minerals 9, no. 2: 135. https://doi.org/10.3390/min9020135
APA StylePetrashova, D., Martynova, A., & Megorskiy, V. (2019). Genetic Damage in Workers from the Rare Metal Ore Production Region. Minerals, 9(2), 135. https://doi.org/10.3390/min9020135