Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China
Abstract
:1. Introduction
2. Geological Setting and Ore Deposit Geology
3. Petrography and Analytical Methods
3.1. Petrographic Features
3.2. Analytical Methods
3.2.1. Zircon LA-ICP-MS U-Pb Dating
3.2.2. Whole-Rock Geochemical Analyses
4. Analytical Results
4.1. Zircon U-Pb Geochronology
4.2. Major and Trace Element Geochemistry
5. Discussion
5.1. Timing of Nb Mineralization
5.2. Implications for Tectonic Setting
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Zhao, J.; Zhai, Y. Shaolahazi alkaline rock Nb-Ta mineralization characteristics and prospecting direction of alkaline rocks in the central part of Jilin Province. Jilin Geol. 2011, 30, 36–39, (In Chinese with English abstract). [Google Scholar]
- Cai, X.; Song, Y. Distribution of niobium and tantalum minerals and metallogenic conditions in northeast China. Ore Depos. Geol. 2014, 33, 1155–1156, (In Chinese with English abstract). [Google Scholar]
- Mao, C.X.; Zheng, C.Q.; Bi, Z.W.; Yang, Y.J.; Cai, L.; Zhang, C.P. Preliminary Study on the Prospectng Potentlal of Niobium-Tantalum Deposite in Daxinganling Region. Geol. Resour. 2016, 25, 269–274, (In Chinese with English abstract). [Google Scholar]
- Sun, L.J.; Zhang, Y.H.; Yu, J.H. Discussion Geological Features and Age on the Alkaline-Complex of Fengcheng of the Eastern Liaoning. J. Liaoning Commun. Coll. 2008, 10, 41–44, (In Chinese with English abstract). [Google Scholar]
- Ju, N.; Zhang, S.; Bi, Z.W.; Shi, L.; Zhang, D. Study on ore-forming conditions of fengcheng horse niobium deposit in Liaoning Province. J. Miner. Sci. 2017, supplement, 189, (In Chinese with English abstract). [Google Scholar]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Gunther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Geoanal. Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204 Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Bateman, P.; Dudek, A.; Keller, J.; Lameyre, J.; Le Bas, M.J.; Sabine, P.A.; Schmid, R.; Sorensen, H.; Streckeisen, A.; et al. A Classification of Igneous Rocks and Glossary of Terms; Blackwell: Oxford, UK, 1989. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Niu, H.C.; Shan, Q.; Chen, X.M.; Zhang, H.Y. The relation between light rare earth deposits and slow earth processes in the pangxi rift zone. Sci. China 2002, 32, 33–40, (In Chinese with English abstract). [Google Scholar]
- Bakker, R.J.; Elburg, M.A. A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): From diopside-titanitepegmatites to hematite-quartz growth. Contrib. Mineral. Petrol. 2006, 152, 541–569. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Gou, Z.Y.; Liang, Z.L.; Zhang, J.L.; Zhu, R. Nature and origin of Triassic igneous activity in the Western Qinling Orogen: The Wenquan composite pluton example. Int. Geol. Rev. 2018, 60, 242–266. [Google Scholar] [CrossRef]
- Bonin, B. Alkaline rocks and geodynamics. Turk. J. Earth Sci. 1998, 7, 105–118. [Google Scholar]
- Crockettand, R.N.; Sutphin, D.M. International Strategic Minerals Inventory Summary Report—Niobium and Tantalum; Circular 930-M; U.S. Geological Survey: Reston, VA, USA, 1993; 36p.
- Cai, J.H.; Yan, G.H.; Xu, B.L.; Wang, G.Y.; Mou, B.L.; Zhao, Y.C. The Late Mesozoic Alkaline Intrusive Rocks at the East Foot of the Taihang-Da Hinggan Mountains: Lithogeochemical Characteristics and Their Implications. J. Earth 2006, 27, 447–459, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Wang, Q.F.; Li, G.J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Liu, X.Y.; Cai, J.H.; Yan, G.H. Petrogeochemical characteristics and geological significance of ancient middle proterozoic alkali rocks in the southern margin of north China craton. Ore Depos. Geol. 2010, 29, 1109–1110, (In Chinese with English abstract). [Google Scholar]
- Geng, J.Z.; Qiu, K.F.; Gou, Z.Y.; Yu, H.C. Tectonic regime switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS zircon U–Pb geochronology and Lu–Hf isotope of Dangchuan intrusive complex in Gansu, China. Chem. Erde Geochem. 2017, 77, 637–651. [Google Scholar] [CrossRef]
- Wang, F.L.; Zhao, T.P.; Chen, W. Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits. Ore Depos. Geol. 2012, 31, 293–308, (In Chinese with English abstract). [Google Scholar]
- Wang, P.X.; Bao, M.W. General Situation and Prospecting Revelation of Tantalum-Niobium Rare Metal Deposits in China. Met. Mines 2015, 468, 92–97, (In Chinese with English abstract). [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in Oceanic Basins; Saunders, A.D., Norry, M.J., Eds.; Geological society London Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry: Development in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–107. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries. In Andesits. Chochester; Thorpe, R.S., Ed.; Wiley: Hoboken, NJ, USA, 1982; pp. 525–548. [Google Scholar]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.; Sun, D.Y. Phanerozoic continental crustal growth: U-Pb and Sr-Nd isotopic evidence from the gran-ites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Zhang, C.H.; Kang, Z.; Zhang, G.Y.; Liu, Y.C. Sequential characteristic of regional mineralization and magmatism of NE, China in Mesozoic. Geol. Resour. 2009, 18, 87–99, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.J.; Zhang, C.; Li, N.; Yang, Y.F.; Deng, K. Geology of the Mo Deposits in Northeast China. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 1223–1268, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y. Research on Characteristics of Geology, Geochemistry and Metallogenic Mechanism of the Jurassic Molybdenum Deposits in the Mid-East Area of Jilin. Ph.D. Thesis, Jilin University, Changchun, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Cao, Z.Q.; Hou, G.J. The Late Mesozoic Alkaline Intrusive Rocks at the North of the Da Hinggan Mountains: Lithogeochemical Characteristics and Their Implications. Miner. Rock Geochem. Bull. 2009, 28, 209–216, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Carranza, E.J.M.; Lu, Y.J. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar and apatite fission track thermochronometry. Miner. Depos. 2015, 50, 987–1006. [Google Scholar]
- Cheng, X.H.; Xu, J.H.; Zhang, H. The inclusions in quartz veins in the alkaline rock area of berchon in eastern Liaoning Province. Ore Depos. Geol. 2014, 33, 503–504, (In Chinese with English abstract). [Google Scholar]
- He, J.L. Ore-forming Geological Conditions and Prospecting Potential for Nb-Ta Mineral Deposits in Panzhihua-Xichang Region, Sichuan. Geol. J. Sichuan 2004, 24, 206–211, (In Chinese with English abstract). [Google Scholar]
- Li, S.P.; Zhan, S.Z.; Jin, T.T.; Chen, J.; Ren, H.; Qiu, W. REE Geochemical Characteristics and Provenance Analysis of the Shaliuquan Niobium Tantalum Pegmatite Ore, Qinghai Province. Rare Earths 2016, 37, 39–46, (In Chinese with English abstract). [Google Scholar]
- Yuan, Z.X.; Bai, G. Temporal and Spatial Distribution of Endogenic Rare and Rare Earth Mineral Deposits of China. Ore Depos. Geol. 2001, 20, 347–354, (In Chinese with English abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Dilek, Y.; Qiu, K.F.; Ji, X.Z.; Li, N.; Taylor, R.D.; Yu, J.Y. Structure, geochronology and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling Orogen, China. Geol. Soc. Am. Bull. 2015, 127, 1831–1854. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Qiu, K.F.; Ji, X.Z.; Santosh, M.; Song, K.R.; Song, Y.H.; Geng, J.Z.; Zhang, C.; Hua, B. Magma mixing and crust–mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry and zircon U–Pb–Hf isotopic systematics. J. Asian Earth Sci. 2015, 98, 320–341. [Google Scholar] [CrossRef]
- Zhang, P.S.; Yang, Z.M.; Tao, K.J.; Song, R.K. Niobian-Tantalian and Rare Earth Mineralogy in China and Their Industrial Utilization. Rare Met. 2005, 29, 206–210, (In Chinese with English abstract). [Google Scholar]
- Nan, J.; Yunsheng, R.; Sen, Z.; Linlin, K.; Di, Z.; Yuchao, G.; Qun, Y.; Hui, W.; Lei, S.; Qiushi, S.; et al. The Early Jurassic Chang’anbu porphyry Cu–Mo deposit in Northeastern China: Constraints from zircon U-Pb geochronology and H-O-S-Pb stable isotopes. Geol. J. 2018, 53, 2437–2448. [Google Scholar]
- Ran, Q.C.; Liu, X.Z. Significance of Contrasting Between Fengcheng Alkali Complex and Related Diamond-Bearing Rocks. J. Chang. Inst. Geol. 1993, 23, 279–285, (In Chinese with English abstract). [Google Scholar]
- Ren, J.; Lu, S.C. Survey of world niobium resources and their characteristics. Nonferr. Metall. 1997, 5, 1–3, (In Chinese with English abstract). [Google Scholar]
- Qiu, K.F.; Marsh, E.; Yu, H.C.; Pfaff, K.; Gulbransen, C.; Gou, Z.Y.; Li, N. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, Western Qinling, NW China. Ore Geol. Rev. 2017, 86, 459–473. [Google Scholar] [CrossRef]
- Zhu, J.C.; Li, R.K.; Li, F.C.; Xiong, X.L.; Zhou, F.Y.; Huang, X.L. Topaz-albite granites and rare-metal mineralization in the Limu District, Guangxi Province, Southeast China. Miner. Desposita 2001, 36, 393–405. [Google Scholar] [CrossRef]
- Kempe, U.; Gotze, J.; Dandar, S.; Habermann, D. Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study. Mineral. Mag. 1999, 63, 165–177. [Google Scholar] [CrossRef]
- Pal, D.C.; Mishra, B.; Bernhardt, H.J. Mineralogy and geochemistry of pegmatite-hosted Sn-Ta-Nb-and Zr-Hf-bearing minerals from the southeastern part of the Bastar-Malkangiri Pegmatite Belt, Central India. Ore Geol. Rev. 2007, 30, 30–55. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yang, L.Q. Genetic feature of monazite and its U–Th–Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrol. Sin. 2011, 27, 2721–2732, (In Chinese with English abstract). [Google Scholar]
- Sørensen, H. Alkaline Rocks; Wiley: Hoboken, NJ, USA, 1974; 622p. [Google Scholar]
- Shand, S.J. The problem of the alkaline rocks. Proc. Geol. Soc. S. Afr. 1922, 25, 19–33. [Google Scholar]
Sample No. | Isotopic Ratios | Age (Ma) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb/206Pb | 1σ | 208Pb/232Th | 1σ | 232Th/238U | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 208Pb/232Th | 1σ | |
1 | 0.0365 | 0.0006 | 0.2695 | 0.0106 | 0.0535 | 0.0023 | 0.0118 | 0.0002 | 0.8691 | 231 | 4 | 242 | 8 | 238 | 5 |
2 | 0.0364 | 0.0005 | 0.2589 | 0.0051 | 0.0515 | 0.0013 | 0.0122 | 0.0002 | 0.3079 | 231 | 3 | 234 | 4 | 246 | 3 |
3 | 0.0364 | 0.0006 | 0.2548 | 0.0117 | 0.0508 | 0.0025 | 0.0114 | 0.0002 | 0.8899 | 230 | 4 | 230 | 9 | 229 | 5 |
4 | 0.0356 | 0.0008 | 0.2489 | 0.0185 | 0.0507 | 0.0039 | 0.0131 | 0.0003 | 1.2228 | 226 | 5 | 226 | 15 | 263 | 5 |
5 | 0.0369 | 0.0011 | 0.2648 | 0.0303 | 0.0521 | 0.0061 | 0.0108 | 0.0004 | 0.9987 | 233 | 7 | 239 | 24 | 218 | 9 |
6 | 0.0365 | 0.0007 | 0.2544 | 0.0160 | 0.0506 | 0.0033 | 0.0112 | 0.0004 | 0.7179 | 231 | 5 | 230 | 13 | 226 | 9 |
7 | 0.0361 | 0.0016 | 0.2470 | 0.0438 | 0.0496 | 0.0090 | 0.0130 | 0.0012 | 0.5357 | 229 | 10 | 224 | 36 | 262 | 23 |
8 | 0.0351 | 0.0007 | 0.2538 | 0.0154 | 0.0525 | 0.0033 | 0.0109 | 0.0004 | 0.5554 | 222 | 4 | 230 | 12 | 219 | 7 |
9 | 0.0367 | 0.0008 | 0.2606 | 0.0173 | 0.0516 | 0.0036 | 0.0116 | 0.0003 | 1.7506 | 232 | 5 | 235 | 14 | 232 | 5 |
10 | 0.0363 | 0.0011 | 0.2615 | 0.0284 | 0.0522 | 0.0059 | 0.0097 | 0.0005 | 0.6265 | 230 | 7 | 236 | 23 | 195 | 10 |
11 | 0.0359 | 0.0006 | 0.2551 | 0.0078 | 0.0516 | 0.0018 | 0.0112 | 0.0002 | 1.1001 | 227 | 3 | 231 | 6 | 226 | 3 |
12 | 0.0364 | 0.0005 | 0.2543 | 0.0072 | 0.0507 | 0.0016 | 0.0115 | 0.0001 | 1.5393 | 230 | 3 | 230 | 6 | 232 | 3 |
13 | 0.0366 | 0.0006 | 0.2558 | 0.0072 | 0.0506 | 0.0016 | 0.0124 | 0.0001 | 4.8276 | 232 | 3 | 231 | 6 | 249 | 2 |
Sample No. | SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMH1-1 | 63.80 | 15.25 | 3.50 | 0.51 | 1.59 | 2.57 | 9.36 | 0.09 | 0.36 | 0.10 | 2.89 | 100.02 |
SMH1-2 | 80.94 | 1.16 | 2.64 | 0.03 | 1.26 | 2.53 | 7.18 | 0.07 | 0.46 | 0.04 | 3.69 | 100.00 |
SMH1-3 | 57.16 | 19.11 | 3.72 | 0.45 | 1.57 | 4.53 | 10.98 | 0.08 | 0.41 | 0.08 | 1.90 | 99.99 |
SMH1-4 | 57.38 | 18.11 | 3.68 | 0.53 | 1.95 | 4.07 | 10.25 | 0.09 | 0.64 | 0.11 | 3.18 | 99.98 |
SMH1-5 | 55.86 | 18.81 | 3.96 | 0.70 | 2.11 | 4.25 | 10.58 | 0.10 | 0.62 | 0.11 | 2.91 | 100.00 |
Sample No. | Li | Ti | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Mn | Zr | Nb | Hf | Cs | Ba |
SMH1-1 | 69.94 | 2608.20 | 2.30 | 64.87 | 15.26 | 7.07 | 0.92 | 30.94 | 85.41 | 29.11 | 312.20 | 2846.00 | 73.54 | 804.80 | 410.80 | 37.89 | 9.06 | 2.90 | 3366.00 |
SMH1-2 | 61.38 | 4044.60 | 1.40 | 71.03 | 12.84 | 4.79 | 0.12 | 28.83 | 73.26 | 24.17 | 214.20 | 1171.20 | 77.84 | 706.20 | 888.20 | 106.59 | 20.30 | 2.93 | 2528.00 |
SMH1-3 | 40.37 | 2552.40 | 1.88 | 61.56 | 14.45 | 4.46 | 0.91 | 25.42 | 98.48 | 30.28 | 290.20 | 2750.00 | 49.60 | 676.40 | 380.40 | 34.79 | 7.84 | 2.50 | 2708.00 |
SMH1-4 | 55.55 | 4221.00 | 2.45 | 60.91 | 15.32 | 5.14 | 2.45 | 29.01 | 98.51 | 30.49 | 287.60 | 2900.00 | 112.72 | 766.80 | 629.80 | 69.39 | 14.05 | 2.95 | 2912.00 |
SMH1-5 | 51.15 | 3943.80 | 2.47 | 59.11 | 13.10 | 5.953 | 0.51 | 26.30 | 103.14 | 32.06 | 292.80 | 2742.00 | 154.16 | 774.80 | 532.60 | 74.74 | 11.89 | 2.93 | 2396.00 |
Sample No. | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Ta | Pb | Th | U | |
SMH1-1 | 227.60 | 446.00 | 48.36 | 159.80 | 26.62 | 7.38 | 19.04 | 2.56 | 13.27 | 2.48 | 6.65 | 0.83 | 4.85 | 0.56 | 1.41 | 60.88 | 127.10 | 18.02 | |
SMH1-2 | 91.50 | 186.02 | 26.80 | 95.36 | 19.87 | 6.02 | 15.95 | 2.73 | 16.60 | 3.41 | 9.95 | 1.37 | 8.16 | 0.94 | 2.66 | 48.80 | 124.42 | 38.53 | |
SMH1-3 | 176.90 | 320.60 | 33.80 | 110.90 | 19.39 | 5.53 | 14.37 | 1.95 | 9.95 | 1.80 | 4.61 | 0.55 | 3.01 | 0.34 | 1.42 | 69.53 | 89.85 | 13.03 | |
SMH1-4 | 340.00 | 667.60 | 77.48 | 233.40 | 38.34 | 10.59 | 27.82 | 3.81 | 19.91 | 3.70 | 9.78 | 1.22 | 6.98 | 0.81 | 2.60 | 79.18 | 189.32 | 32.25 | |
SMH1-5 | 466.00 | 946.00 | 108.26 | 331.60 | 55.38 | 15.14 | 40.24 | 5.56 | 29.08 | 5.35 | 13.87 | 1.67 | 9.08 | 0.99 | 2.35 | 56.45 | 275.50 | 41.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, N.; Ren, Y.-S.; Zhang, S.; Bi, Z.-W.; Shi, L.; Zhang, D.; Shang, Q.-Q.; Yang, Q.; Wang, Z.-G.; Gu, Y.-C.; et al. Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China. Minerals 2019, 9, 80. https://doi.org/10.3390/min9020080
Ju N, Ren Y-S, Zhang S, Bi Z-W, Shi L, Zhang D, Shang Q-Q, Yang Q, Wang Z-G, Gu Y-C, et al. Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China. Minerals. 2019; 9(2):80. https://doi.org/10.3390/min9020080
Chicago/Turabian StyleJu, Nan, Yun-Sheng Ren, Sen Zhang, Zhong-Wei Bi, Lei Shi, Di Zhang, Qing-Qing Shang, Qun Yang, Zhi-Gao Wang, Yu-Chao Gu, and et al. 2019. "Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China" Minerals 9, no. 2: 80. https://doi.org/10.3390/min9020080
APA StyleJu, N., Ren, Y. -S., Zhang, S., Bi, Z. -W., Shi, L., Zhang, D., Shang, Q. -Q., Yang, Q., Wang, Z. -G., Gu, Y. -C., Sun, Q. -S., & Wu, T. (2019). Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China. Minerals, 9(2), 80. https://doi.org/10.3390/min9020080