Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Materials
2.2. Analytical Methodology
3. Results
3.1. Characterization of the Clay Samples
3.2. Mineral-Medicinal Waters
3.3. Hardness (TPA)
3.4. Adhesiveness (TPA)
3.5. Thermal Properties
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75–76, 28–38. [Google Scholar] [CrossRef]
- Aguzzi, C.; Sánchez-Espejo, R.; Cerezo, P.; Machado, J.; Bonferoni, C.; Rossi, S.; Salcedo, I.; Viseras, C. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water. Int. J. Pharm. 2013, 453, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Glavas, N.; Mourelle, M.L.; Gómez, C.P.; Legido, J.L.; Smuc, N.R.; Dolenec, M.; Kovac, N. The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl. Clay Sci. 2017, 135, 119–128. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M.; Sánchez, C.; García, F.J.; Medina, J.A.; Bernabé, J.M. Comparison of saponite andmontmorillonite behaviour during static and stirring maturation with sea water for pelotherapy. Appl. Clay Sci. 2007, 36, 161–173. [Google Scholar] [CrossRef]
- Tateo, F.; Agnini, C.; Carraro, A.; Giannossi, M.L.; Margiotta, S.; Medici, L.; Finizio, F.E.; Summa, V. Short-term and long-term maturation of different clays for pelotherapy in an alkaline–sulphate mineral water (Rapolla, Italy). Appl. Clay Sci. 2010, 50, 503–511. [Google Scholar] [CrossRef]
- Pozo, M.; Carretero, M.I.; Maraver, F.; Pozo, E.; Gómez, I.; Armijo, F.; Martín Rubí, J.A. Composition and physical–physicochemical properties of peloids used in Spanish spas: a comparative study. Appl. Clay Sci. 2013, 83–84, 270–279. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M.; Legido, J.L.; Fernández-González, M.V.; Delgado, R.; Gómez, I.; Armijo, F.; Maraver, F. Assessment of three Spanish clays for their use in pelotherapy. Appl. Clay Sci. 2014, 99, 131–143. [Google Scholar] [CrossRef]
- Morer, C.; Roques, C.F.; Françon, A.; Forestier, R.; Maraver, F. The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int. J. Biometeorol. 2017, 61, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.; Armijo, F.; Maraver, F.; Ejeda, J.M.; Pozo, E.; Corvillo, I. Texture profile analysis (TPA) of clay/seawater mixtures useful for peloid preparation: Effects of clay concentration, pH and salinity. Appl Clay Sci. 2018, 165, 40–51. [Google Scholar] [CrossRef]
- Fernández-Torán, M.A. Propiedades Físico-químicas de Materiales Susceptibles de ser Utilizados en la Preparación de Peloides. Ph.D. Thesis, Universidad Complutense, Madrid, Spain, February 2014. [Google Scholar]
- Carretero, M.I.; Gomes, C.; Tateo, F. Clays, drugs and human health. In Handbook of Clay Science, 2nd ed.; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 711–764. [Google Scholar]
- Rautureau, M.; Gomes, C.S.F.; Liewig, N.; Katouzian-Safadi, M. Principal Modes of Clay Use. In Clays and Health: Properties and Therapeutic Uses; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 139–173. [Google Scholar]
- Gomes, C.S. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Armijo, F.; Maraver, F.; Carretero, M.I.; Pozo, M.; Ramos, M.; Fernandez-Toran, M.A.; Corvillo, I. The water effect on instrumental hardness and adhesiveneness of clay mixtures for Pelotherapy. Appl. Clay Sci. 2015, 114, 395–401. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Classification of textural characteristics. J. Food Sci. 1963, 28, 981–985. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Casás, L.M.; Pozo, M.; Gómez, C.P.; Pozo, E.; Bessiéres, L.D.; F Plantier, F.; Legido, J.L. Thermal behaviour of mixtures of bentonitic clay and saline solutions. Appl. Clay Sci. 2013, 72, 18–25. [Google Scholar] [CrossRef]
- Legido, J.L.; Medina, C.; Mourelle, M.L.; Carretero, M.I.; Pozo, M. Comparative study of the Cooling rates of bentonite, sepiolite and common clays for their use in Pelotherapy. Appl. Clay Sci. 2007, 36, 148–160. [Google Scholar] [CrossRef]
- Armijo, F.; Maraver, F.; Pozo, M.; Carretero, M.I.; Armijo, O.; Fernandez-Toran, M.A.; Fernández-Gonzáles, M.V.; Corvillo, I. Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl. Clay Sci. 2016, 126, 50–56. [Google Scholar] [CrossRef]
- Carretero, MI.; Pozo, M.; Martin-Rubi, J.A.; Pozo, E.; Maraver, F. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spa. Appl. Clay Sci. 2010, 48, 506–515. [Google Scholar] [CrossRef]
- Maraver, F.; Fernández-Torán, M.A.; Corvillo, I.; Morer, C.; Vázquez, I.; Aguilera, L.; Armijo, F. Pelotherapy, a review. Med. Naturista 2015, 9, 38–46. [Google Scholar]
- Carbajo, J.M.; Maraver, F. Salt water and skin interactions: New lines of evidence. Int. J. Biometeorol. 2018, 62, 1345–1360. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Crystallogr. 1974, 7, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Planz, P. Particle size measurement from 0.1 to 1000 µm based on light scattering and diffraction. In Modern Methods of Particle Size Analysis; Barth, H.G., Ed.; Wiley-Interscience Publication: New York, NY, USA, 1984. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Armijo, O. Estudio de los peloides españoles. Ph.D. Thesis, Universidad Complutense, Madrid, Spain, September 2007. [Google Scholar]
- Maraver, F.; Armijo, F. Vademecum II de Aguas Mineromedicinales Españolas; Complutense: Madrid, Spain, 2010. [Google Scholar]
- Rambaud, A.; Rambaud, J.; Berger, G.; Pauvert, B. Mesure et étude du comportement thermique des boues thermales. J. Fr. Hydrol. 1986, 17, 293–302. [Google Scholar]
- Pozo, M.; Calvo, J.P.; Pozo, E.; Moreno, A. Genetic constraints on crystallinity, thermal behaviour and surface area of sepiolite from the Cerro de los Batallones deposit (Madrid Basin, Spain). Appl. Clay Sci. 2014, 91–92, 30–45. [Google Scholar] [CrossRef]
- Ferrand, T.; Yvon, J. Thermal properties of clay pastes for pelotherapy. Appl. Clay Sci. 1991, 6, 21–38. [Google Scholar] [CrossRef]
- Casás, L.M.; Legido, J.L.; Pozo, M.; Mourelle, L.; Plantier, F.; Bessiéres, L.D. Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochim. Acta 2011, 524, 68–73. [Google Scholar] [CrossRef]
- Veniale, F.; Barberis, E.; Cacangiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004, 25, 135–148. [Google Scholar] [CrossRef]
- Álvarez, A. Sepiolite: Properties and Uses. In Developments in Sedimentology; Singer, A., Galan, E., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1984; Volume 37, pp. 253–287. [Google Scholar]
- Bergaya, F.; Lagaly, G. General Introduction: Clays, Clay Minerals, and Clay Science. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Developments of Clay Science: Amsterdam, The Netherlands, 2006; Volume 1, pp. 1–18. [Google Scholar]
- Lagaly, G. Colloid clay science. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 141–245. [Google Scholar]
- Gámiz, E.; Martín-García, J.M.; Fernández-González, M.V.; Delgado, G.; Delgado, R. Influence of water type and maturation time on the properties of kaolinite-saponite peloids. Appl. Clay Sci. 2009, 46, 117–123. [Google Scholar] [CrossRef]
- Fernández-González, M.V.; Martín-García, J.M.; Delgado, G.; Párraga, J.; Delgado, R. A study of the chemical, mineralogical and physicochemical properties of peloids pre- pared with two mineral-medicinal waters from Lanjarón Spa (Granada, Spain). Appl. Clay Sci. 2013, 80–81, 107–116. [Google Scholar] [CrossRef]
- Fernández-González, M.V.; Martín-García, J.M.; Delgado, G.; Párraga, J.; Carretero, M.I.; Delgado, R. Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl. Clay Sci. 2017, 135, 465–474. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of clay minerals in semi-solid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Bettero, A.; Marcazzan, M.; Semanzato, A. Aspetti reolici e tensiometrici di matrici fangose di impiego termale e cosmético. Proposta di un protocollo per la loro qualificazione. Mineral. Petrogr. Acta 1999, 42, 277–286. [Google Scholar]
- Viseras, C.; Cerezo, P.; Mirchandani, J.N.; Aguzzi, C.; López-Galindo, A. Efecto de la “maduración” en las propiedades reológicas de peloides empleados en balnearios españoles e influencia en la mineralogía y textura del componente arcilloso. In Materiales Arcillosos: De la Geologia a las Nuevas Aplicaciones; Gráficas Varona S.A.: Salamanca, Spain, 2006; pp. 279–290. [Google Scholar]
- Viseras, C.; Meeten, G.H.; Lopez-Galindo, A. Pharmaceutical grade phyllosilicate dispersions: The influence of shear history on floc structure. Int. J. Pharm. 1999, 182, 7–20. [Google Scholar] [CrossRef]
- Viseras, C.; Cerezo, P.; Meeten, G.H.; López-Galindo, A. One dimensional filtration of pharmaceutical grade phyllosilicate dispersions. Int. J. Pharm. 2001, 217, 201–213. [Google Scholar] [CrossRef]
- Lopez-Galindo, A.; Viseras, C.; Aguzi, C.; Cerezo, P. Pharmaceutical and Cosmetic Uses of Fibrous Clays. In Developments in Clay Science; Galan, E., Singer, A., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 2011; Volume 3, pp. 299–324. [Google Scholar]
- Chemeda, Y.C.; Christidis, G.E.; Tauhid Khan, N.M.; Koutsopoulou, E.; Hatzistamou, V.; Kelessidis, V.C. Rheological properties of palygorskite–bentonite and sepiolite–bentonite mixed clay suspensions. Appl. Clay Sci. 2014, 90, 165–174. [Google Scholar] [CrossRef]
- Christidis, G.E.; Blum, A.E.; Eberl, D.D. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Appl. Clay Sci. 2006, 34, 125–138. [Google Scholar] [CrossRef]
- Cınar, M.; Can, M.F.; Sabah, E.; Karagüzel, C.; Celik, M.S. Rheological properties of sepiolite ground in acid and alkaline media. Appl. Clay Sci. 2009, 42, 422–426. [Google Scholar] [CrossRef]
- Simonton, T.C.; Komarneni, S.; Roy, R. Gelling properties of sepiolite versus montmorillonite. Appl. Clay Sci. 1988, 3, 165–176. [Google Scholar] [CrossRef]
- Christidis, G.E. (Ed.) Advances in the Characterization of Industrial Minerals; European Mineralogical Union (EMU): London, UK, 2011; Volume 9. [Google Scholar]
Sample | Bulk Mineralogy (wt. %) | Clay Mineralogy (wt. %) | BET (m2/g) |
---|---|---|---|
M1 | Phyllosilicates (95) | Smectite (92) | 145 |
Quartz (2) | Illite (8) | ||
K-feldspar (2) | Kaolinite (Tr) Sepiolite (Tr) | ||
Plagioclase (1) | (d(060) = 1.529 Å) | ||
M2 | Phyllosilicates (99) | Sepiolite (98) | 293 |
Quartz (<1) | Smectite (2) | ||
Plagioclase (<1) | |||
M3 | Phyllosilicates (67) | Smectite (52) | 29 |
Quartz (10) | Illite (41) | ||
Calcite (10) | Kaolinite + Chlorite (7) | ||
Plagioclase (4) | |||
Dolomite (4) | |||
Pyrite (2) | |||
K-feldspar (2) Cristobalite (<1) Gypsum (<1) |
PARAMETER | UNIT | M1 | M2 | M3 |
---|---|---|---|---|
D [3,4] | µm | 16.2 | 16.4 | 29.4 |
Dv (10) | µm | 3.21 | 3.86 | 3.97 |
Dv (50) | µm | 10.2 | 9.45 | 18.0 |
Dv (90) | µm | 36.0 | 40.6 | 63.2 |
Mode | µm | 8.36 | 7.33 | 23.8 |
Uniformity | 1.04 | 1.13 | 1.15 |
W1 | W2 | W3 | |
---|---|---|---|
Type of Water | Strong Mineralization Sodium-Bicarbonate | Strong Mineralization Sodium-Chloride | Strong Mineralization Calcium-Magnesium-Sulphated |
Flavour | saline | saline | saline |
Odour | Odourless | Odourless | Rotten eggs |
Colour | Colourless | Colourless | Colourless |
Spring water temperature (°C) | 15.2 | 51.2 | 17.8 |
Conductivity to 25 °C (μS·cm−1) | 2998 | 4223 | 3876 |
pH (to the water spring temperature) | 5.0 | 7.4 | 6.8 |
Turbidity (UN) | 0.0 | 0.0 | 7.2 |
Dry residue to 180 °C (mg/L) | 1814 | 2732 | 2640 |
Dry residue to 110 °C (mg/L) | 1827 | 3032 | 2728 |
Hardness (mg/L CaCO3) | 208 | 412 | 1870 |
Alkalinity (mg/L CaCO3) | 1505 | 110 | 95 |
Cl− (mg/L) | 93.7 | 1054.8 | 116.7 |
F− (mg/L) | 3.3 | 0.4 | 2.6 |
HCO3− (mg/L) | 1836.1 | 134.2 | 115.9 |
CO32− (mg/L) | 0.0 | 0.0 | 0.0 |
NO3− (mg/L) | 0.0 | 2.8 | 0.0 |
SH− (mg/L) | 0.0 | 0.0 | 16.3 |
SO42− (mg/L) | 2.9 | 320.5 | 1759.8 |
Na+ (mg/L) | 624.1 | 629.9 | 77.4 |
K+ (mg/L) | 26.7 | 11 | 7.6 |
Li+ (mg/L) | 3.4 | 0.2 | 0.3 |
Ca2+ (mg/L) | 37.1 | 129.8 | 516.1 |
Mg2+ (mg/L) | 28.0 | 21.5 | 141.3 |
Sr2+ (mg/L) | 0.0 | 0.0 | 0.0 |
Fe total (mg/L) | 2.4 | 0.1 | 0.0 |
CO2 dissolved (mg/L) | 528 | 4.9 | 71.1 |
H2S dissolved (mg/L) | 0.0 | 0.0 | 27.3 |
Clay | Water | X0 (%) | H0 (g) | XH (%) | X300 (%) | A0 (g.s) | XA (%) |
---|---|---|---|---|---|---|---|
M1 | W1 | 46.6 | 728.9 | 4.9 | 53.0 | 8611.8 | 5.1 |
W2 | 45.4 | 609.0 | 3.4 | 52.5 | 8702.4 | 3.4 | |
W3 | 45.5 | 801.6 | 6.7 | 52.4 | 8756.1 | 3.5 | |
WD | 46.3 | 823.3 | 4.6 | 53.1 | 9514.6 | 6.6 | |
M2 | W1 | 65.0 | 745.1 | 2.9 | 68.8 | 6963.8 | 2.5 |
W2 | 65.0 | 828.0 | 3.9 | 69.8 | 8904.2 | 4.1 | |
W3 | 67.9 | 747.6 | 4.5 | 73.1 | 7980.1 | 3.8 | |
WD | 62.8 | 861.4 | 3.3 | 66.2 | 8950.7 | 3.7 | |
M3 | W1 | 23.3 | 874.9 | 2.4 | 26.1 | 8238.2 | 2.0 |
W2 | 23.2 | 921.3 | 3.1 | 26.1 | 7936.9 | 2.6 | |
W3 | 23.1 | 980.1 | 3.3 | 26.3 | 8590.2 | 3.1 | |
WD | 23.5 | 785.5 | 2.6 | 26.2 | 7297.9 | 2.7 |
Clay | Water | Hardness | Adhesiveness | ||||
---|---|---|---|---|---|---|---|
A | B | R2 | A | B | R2 | ||
M1 | W1 | 13.8175 | −0.1522 | 0.9950 | 16.2078 | −0.1509 | 0.9974 |
W2 | 13.4291 | −0.1444 | 0.9935 | 16.0578 | −0.1484 | 0.9970 | |
W3 | 13.8319 | −0.1556 | 0.9825 | 16.5729 | −0.1612 | 0.9856 | |
WD | 13.7352 | −0.1539 | 0.9914 | 16.4404 | −0.1583 | 0.9934 | |
M2 | W1 | 23.1746 | −0.2623 | 0.9923 | 25.5167 | −0.2598 | 0.9889 |
W2 | 22.5248 | −0.2442 | 0.9951 | 25.0833 | −0.2453 | 0.9902 | |
W3 | 19.6927 | −0.1992 | 0.9936 | 21.7983 | −0.1940 | 0.9972 | |
WD | 18.5847 | −0.1756 | 0.9948 | 20.3335 | −0.1658 | 0.9959 | |
M3 | W1 | 16.5680 | −0.4201 | 0.9878 | 17.6202 | −0.3708 | 0.9943 |
W2 | 16.8025 | −0.4294 | 0.9912 | 19.5497 | −0.4498 | 0.9973 | |
W3 | 15.8456 | −0.3895 | 0.9954 | 17.6237 | −0.3724 | 0.9907 | |
WD | 16.7569 | −0.4253 | 0.9895 | 18.9594 | −0.4250 | 0.9926 |
Clay | Hardness | Adhesiveness | ||||
---|---|---|---|---|---|---|
p-Value All Water | Waters | p-Value | p-Value All Water | Waters | p-Value | |
M1 | 0.5114 | 0.6624 | ||||
M2 | 0.0004 | WD-W1 | 0.1954 | 0.0034 | WD-W1 | 0.0006 |
WD-W2 | 0.0001 | WD-W2 | 0.9431 | |||
WD-W3 | 0.0000 | WD-W3 | 0.0419 | |||
W1-W2 | 0.0000 | W1-W2 | 0.0031 | |||
W1-W3 | 0.0010 | W1-W3 | 0.2712 | |||
W2-W3 | 0.0194 | W2-W3 | 0.0397 | |||
M3 | 0.0842 | 0.1350 |
Clay | Water | H2O % | Ash % | Cp J/(kgK) | tr min |
---|---|---|---|---|---|
M1 | W1 | 53.0 | 43.7 | 2682 | 9.1 |
W2 | 52.5 | 44.6 | 2663 | 9.2 | |
W3 | 52.4 | 45.4 | 2659 | 9.2 | |
WD | 53.1 | 43.3 | 2685 | 9.1 | |
M2 | W1 | 68.8 | 27.9 | 3218 | 10.0 |
W2 | 69.8 | 27.5 | 3249 | 9.9 | |
W3 | 73.1 | 24.5 | 3357 | 10.0 | |
WD | 66.2 | 30.9 | 3133 | 10.2 | |
M3 | W1 | 26.1 | 67.1 | 1712 | 5.2 |
W2 | 26.1 | 67.0 | 1714 | 5.3 | |
W3 | 26.3 | 66.8 | 1721 | 5.3 | |
WD | 26.2 | 66.8 | 1717 | 5.4 |
Clay | Water | A | B | R2 |
---|---|---|---|---|
M1 | W1 | 3.7502 | −0.0064 | 0.8367 |
W2 | 3.7220 | −0.0040 | 0.7230 | |
W3 | 3.7443 | −0.0058 | 0.8139 | |
WD | 3.7289 | −0.0045 | 0.7508 | |
M2 | W1 | 3.7411 | −0.0050 | 0.8150 |
W2 | 3.7426 | −0.0052 | 0.8239 | |
W3 | 3.7529 | −0.0062 | 0.8523 | |
WD | 3.7451 | −0.0055 | 0.8393 | |
M3 | W1 | 3.7493 | −0.0104 | 0.8163 |
W2 | 3.7403 | −0.0096 | 0.7987 | |
W3 | 3.7455 | −0.0010 | 0.8081 | |
WD | 3.7445 | −0.0099 | 0.8062 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozo, M.; Armijo, F.; Maraver, F.; Zuluaga, P.; Ejeda, J.M.; Corvillo, I. Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type. Minerals 2019, 9, 144. https://doi.org/10.3390/min9030144
Pozo M, Armijo F, Maraver F, Zuluaga P, Ejeda JM, Corvillo I. Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type. Minerals. 2019; 9(3):144. https://doi.org/10.3390/min9030144
Chicago/Turabian StylePozo, Manuel, Francisco Armijo, Francisco Maraver, Pilar Zuluaga, José Manuel Ejeda, and Iluminada Corvillo. 2019. "Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type" Minerals 9, no. 3: 144. https://doi.org/10.3390/min9030144
APA StylePozo, M., Armijo, F., Maraver, F., Zuluaga, P., Ejeda, J. M., & Corvillo, I. (2019). Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type. Minerals, 9(3), 144. https://doi.org/10.3390/min9030144