Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobšiná, Slovakia
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
2.1. Sample Description
2.2. Analytical Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaličiak, M.; Ďud’a, R.; Burda, P.; Kaličiaková, E. Structural geological characteristics of the Dubník opal deposits. Zborník Vychodoslovenského Múzea v Košiciach 1976, 17, 7–22. [Google Scholar]
- Rondeau, B.; Fritsch, E.; Guiraud, M.; Renac, C. Opals from Slovakia (“Hungarian” opals): A re-assessment of the conditions of formation. Eur. J. Mineral. 2004, 16, 789–799. [Google Scholar] [CrossRef]
- Gaillou, E.; Fritsch, E.; Aguilar-Reyes, B.; Rondeau, B.; Post, J.; Barreau, A.; Ostroumov, M. Common gem opal: An investigation of micro- to nano-structure. Am. Mineral. 2008, 93, 1865–1873. [Google Scholar] [CrossRef]
- Gaillou, E.; Delaunay, A.; Rondeau, B.; Bouhnik-le-Coz, M.; Fritsch, E.; Cornen, G.; Monnier, C. The geochemistry of gem opals as evidence of their origin. Ore Geol. Rev. 2008, 34, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Kiefert, L.; Karampelas, S. Use of the Raman spectrometer in gemmological laboratories: Review. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2011, 80, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Caucia, F.; Marinoni, L.; Leone, A.; Adamo, I. Investigation on the gemological, physical and compositional properties of some opals from Slovakia (“Hungarian” opals). Periodico di Mineralogia 2013, 82, 251–261. [Google Scholar]
- Caucia, F.; Ghisoli, C.; Marinoni, L.; Bordoni, V. Opal, a beautiful gem between myth and reality. Neues Jahrbuch fur Mineralogie Abhandlungen 2013, 190, 1–9. [Google Scholar] [CrossRef]
- Ďuďa, R. Gemmological and genetic classification of precious and trim stones of Slovakia. Mineral. Slovaca 1987, 19, 353–362. (In Slovakian) [Google Scholar]
- Fridrichová, J.; Bačík, P.; Illášová, Ľ.; Kozáková, P.; Škoda, R.; Pulišová, Z.; Fiala, A. Raman and optical spectroscopic investigation of gem-quality smoky quartz crystals. Vib. Spectrosc. 2016, 85, 71–78. [Google Scholar] [CrossRef]
- Fridrichová, J.; Bačík, P.; Malíčková, I.; Illášová, Ľ.; Pulišová, Z. Optical-spectroscopic study of gem sphalerite from Banská Štiavnica and Hodruša-Hámre. Esemestník 2017, 6, 13–15. (In Slovakian) [Google Scholar]
- Uher, P.; Sabol, M.; Konečný, P.; Gregáňová, M.; Táborský, Z.; Puškelová, Ľ. Sapphire from Hajnáčka Cérová Highland, southern Slovakia. Slovak Geol. Mag. 1999, 5, 273–280. [Google Scholar]
- Uher, P.; Sabol, M.; Konečný, P.; Gregáňová, M.; Táborský, Z.; Puškelová, Ľ. Zafír vo výplni vrchnopliocénneho maaru pri Hajnáčke. Miner. Slovaca 2001, 33, 307–308. [Google Scholar]
- Uher, P.; Giuliani, G.; Szakáll, S.; Fallick, A.; Strunga, V.; Vaculovič, T.; Ozdín, D.; Gregáňová, M. Sapphires related to alkali basalts from the Cerová Highlands, Western Carpathians (southern Slovakia): Composition and origin. Geol. Carpath. 2012, 63, 71–82. [Google Scholar] [CrossRef]
- Quareni, S.; De Pieri, R. La struttura dell’andradite. Atti. e Memorie dell’. Accademia Patavina di Science Lettere ed Arti 1966, 78, 151–170. [Google Scholar]
- Novak, G.A.; Gibbs, G.V. The crystal chemistry of the silicate garnets. Am. Mineral. 1971, 56, 791–825. [Google Scholar]
- Hazen, R.M.; Finger, L.W. High-pressure crystal chemistry of andradite and pyrope: Revised procedure for high-pressure diffraction experiments. Am. Mineral. 1989, 74, 352–359. [Google Scholar]
- Lager, G.A.; Armbruster, T.; Rotella, F.J.; Rossman, G.R. OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am. Mineral. 1989, 74, 840–851. [Google Scholar]
- Armbruster, T.; Geiger, C.A. Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. Eur. J. Mineral. 1993, 5, 59–71. [Google Scholar] [CrossRef]
- Armbruster, T.; Birrer, J.; Libowitzky, E.; Beran, A. Crystal chemistry of Ti-bearing andradites. Eur. J. Mineral. 1998, 10, 907–921. [Google Scholar] [CrossRef]
- Pavese, A.; Diella, V.; Pischedda, V.; Merli, M.; Bocchio, R.; Mezouar, M. Pressure-temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Phys. Chem. Miner. 2001, 28, 242–248. [Google Scholar] [CrossRef]
- Bocchio, R.; Adamo, I.; Diella, V. Trace-element profiles in gem-quality green andradite from classic localities. Can. Mineral. 2010, 48, 1205–1216. [Google Scholar] [CrossRef]
- Adamo, I.; Gatta, G.D.; Rotiroti, N.; Diella, V.; Pavese, A. Green andradite stones: Gemmological and mineralogical characterisation. Eur. J. Mineral. 2011, 23, 91–100. [Google Scholar] [CrossRef]
- Balčiūnaitė, I.; Kleišmantas, A.; Norkus, E. Chemical composition of rare garnets, their colours and gemmological characteristics. Chemija 2015, 26, 18–24. [Google Scholar]
- O’Donoghue, M. Gems, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2006; p. 936. [Google Scholar]
- Adamo, I.; Bocchio, R.; Diella, V.; Caucia, F.; Schmetzer, K. Demantoid from Balochistan, Pakistan: Gemmological and Mineralogical Characterization. J. Gemmol. 2015, 34, 428–433. [Google Scholar] [CrossRef]
- Phillips, W.R.; Talantsev, A.S. Russian demantoid, czar of the garnet family. Gems Gemol. 1996, 32, 100–111. [Google Scholar] [CrossRef]
- Krzemnicki, M.S. Diopside needles as inclusions in demantoid garnet from Russia: A Raman microspectrometric study. Gems Gemol. 1999, 35, 192–195. [Google Scholar] [CrossRef]
- Laurs, B.M. A new find of demantoid at a historic side in Kladovka, Russia. Gems Gemol. 2003, 39, 54–55. [Google Scholar]
- Mayerson, W.M. Lab Notes: Large demantoid of exceptional color. Gems Gemol. 2006, 42, 261–262. [Google Scholar]
- Adamo, I.; Bocchio, R.; Diella, V.; Pavese, A.; Vignola, P.; Prosperi, L.; Palanza, V. Demantoid from Val Malenco, Italy: Review and update. Gems Gemol. 2009, 45, 280–287. [Google Scholar] [CrossRef]
- Douman, M.; Dirlam, D. Update on demantoid and cat´s-eye from Iran. Gems Gemol. 2004, 40, 67–68. [Google Scholar]
- Du Toi, G.; Mayerson, W.; van Der Bogert, C.; Douman, M.; Befi, R.; Koivula, J.I.; Kiefert, L. Demantoid from Iran. Gems Gemol. 2006, 42, 131. [Google Scholar]
- Karampelas, S.; Gaillou, E.; Fritsch, E.; Douman, M. Les grenats andradites-démantoïde d’Iran: Zonage de couleur et inclusions. Rev. Gemmol. 2007, 160, 14–20. [Google Scholar]
- Fritz, E.A.; Laurs, B.M. Gem News International: Andradite from Balochistan, Pakistan. Gems Gemol. 2007, 43, 373. [Google Scholar]
- Milisenda, C.C.; Henn, U.; Henn, J. Demantoide aus Pakistan. Gemmol. Z. Dtsch. Gemmol. Ges. 2001, 50, 51–56. [Google Scholar]
- Quinn, E.P.; Laurs, B.M. Demantoid from northern Pakistan. Gems Gemol. 2005, 41, 176–177. [Google Scholar]
- Palke, A.C.; Pardieu, V. Gem News International: Demantoid from Baluchistan Province in Pakistan. Gems Gemol. 2014, 50, 302–303. [Google Scholar]
- Lind, T.; Henn, U.; Bank, H. New occurrence of demantoid in Namibia. Aust. Gemmol. 1998, 20, 75–79. [Google Scholar]
- Cairncross, B.; Bahmann, U. The Erongo Mountains, Namibia. Mineral. Rec. 2006, 37, 361–470. [Google Scholar]
- Koller, F.; Niedermayar, G.; Pintér, Z.; Syabó, C. The demantoid garnets of the Green Dragon Mine (Tubussi, Erongo region, Namibia). Acta Mineral.-Petrogr. 2012, 7, 72. [Google Scholar]
- Kaiser, H.; Enzersdorf, M. Demantoid aus der Green Dragon Mine, Erongo Region, Namibia. Gemmo News 2012, 32, 5. [Google Scholar]
- Danet, F. Gem News International: New discovery of demantoid from Ambanja, Madagascar. Gems Gemol. 2009, 45, 218–219. [Google Scholar]
- Rondeau, B.; Mocquet, B.; Lulzac, Y.; Fritsch, E. Les nouveaux grenats démantoïde d’Ambanja, Province d’Antsiranana, Madagascar. Le Règne Mineral 2009, 90, 41–45. [Google Scholar]
- Rondeau, B.; Fritsch, E.; Mocquet, B.; Lulyac, Y. Ambanja (Madagascar)—New source of gem demantoid garnet. InColor 2009, 11, 16–20. [Google Scholar]
- Praszkier, T.; Gajowniczek, J. Demantoide aus Antetezambato auf Madagascar. Miner. Welt 2010, 21, 32–41. [Google Scholar]
- Pezzotta, F. Andradite from Antetezambato, North Madagascar. Mineral. Rec. 2010, 41, 209–229. [Google Scholar]
- Pezzotta, F.; Adamo, I.; Diella, V. Demantoid and topazolite from Antetezambato, northern Madagascar: Review and new data. Gems Gemol. 2011, 47, 2–14. [Google Scholar] [CrossRef]
- Wilson, B.S. Coloured gemstones from Canada. Rocks Miner. 2009, 85, 24–43. [Google Scholar] [CrossRef]
- Ostrooumov, M. Mexican demantoid from new deposits. Gems Gemol. 2015, 51, 450–452. [Google Scholar]
- Guobin, L.; Xu, K.; Lin, Z. On the Genesis of Demantoid from Xinjiang, China. Chin. J. Geochem. 1986, 5, 381–390. [Google Scholar] [CrossRef]
- Mock, R.; Sýkora, M.; Aubrecht, R.; Ožvoldová, L.; Kronome, B.; Reichwalder, P.; Jablonský, J. Petrology and stratigraphy of the Meliaticum near the Meliata and Jaklovce Villages, Slovakia. Slovak Geol. Mag. 1998, 4, 223–260. [Google Scholar]
- Kozur, H. The Evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 87, 109–135. [Google Scholar] [CrossRef]
- Stampfli, G.M. The Intra-Alpine terrain: A Paleotethyan remnant in the Alpine Variscides. Eclogae Geol. Helv. 1996, 89, 13–42. [Google Scholar]
- Ivan, P. Relics of the Meliata Ocean crust: Geodynamic implications of mineralogical, petrological and geochemical proxies. Geol. Carpath. 2002, 53, 245–256. [Google Scholar]
- Faryad, S.W.; Spišiak, J.; Horváth, P.; Hovorka, D.; Dianiška, I.; Józsa, S. Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic Oceanic Basin, Western Carpathians. Ofioliti 2005, 30, 27–35. [Google Scholar]
- Kozur, H.; Mock, R. New paleogeographic and tectonic interpretations in the Slovakian Carpathians and their implications for correlations with the Eastern Alps and other parts of the Western Tethys, Part II: Inner Western Carpathians. Miner. Slovaca 1997, 29, 164–209. [Google Scholar]
- Kozur, H.; Mock, R. Erster Nachweis von Jura der Meliata-Einheit der südlichen Westkarpaten. Geologisch-Paläontologische Mitteilungen Innsbruck 1985, 13, 223–238. [Google Scholar]
- Putiš, M.; Radvanec, M.; Hain, M.; Koller, F.; Koppa, M.; Snárska, B. 3-D analysis of perovskite in serpentinite (Dobšiná quarry) by X-ray micro-tomography. In Proceedings of the Petros Symposium; Ondrejka, M., Šarinová, K., Eds.; Univerzita Komenského: Bratislava, Slovakia, 2011; pp. 33–37. [Google Scholar]
- Dallmeyer, R.D.; Neubauer, F.; Handler, R.; Fritz, H.; Müller, W.; Pana, D.; Putiš, M. Tectonothermal evolution of the internal Alps and Carpathians: 40Ar/39Ar mineral and whole rock data. Eclogae Geol. Helv. 1996, 89, 203–277. [Google Scholar]
- Putiš, M.; Yang, Y.-H.; Koppa, M.; Dyda, M.; Šmál, P. U/Pb LA-ICP-MS age of metamorphic-metasomatic perovskite from serpentinized harzburgite in the Meliata Unit at Dobšiná, Slovakia: Time constraint of fluid-rock interaction in an accretionary wedge. Acta Geol. Slovaca 2015, 7, 63–71. [Google Scholar]
- Faryad, S.W.; Henjes-Kunst, F. Petrological and K-Ar and 40Ar/39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata unit, Western Carpathians (Slovakia). Tectonophysics 1997, 280, 141–156. [Google Scholar] [CrossRef]
- Plašienka, D. Cretaceous tectonochronology of the central western Carpathians, Slovakia. Geol. Carpath. 1997, 48, 99–111. [Google Scholar]
- Putiš, M.; Frank, W.; Plašienka, D.; Siman, P.; Sulák, M.; Biroň, A. Progradation of the Alpidic Central Western Carpathians orogenic wedge related to two subductions: Constrained by 40Ar/39Ar ages of white micas. Geodin. Acta 2009, 22, 31–56. [Google Scholar] [CrossRef]
- Dal Piaz, G.; Martin, S.; Villa, I.M.; Gosso, G.; Marschalko, R. Late Jurassic blueschist facies pebbles from the Western Carpathians orogenic wedge and paleostructural implications for Western Tethys evolution. Tectonics 1995, 14, 874–885. [Google Scholar] [CrossRef]
- Putiš, M.; Gawlick, H.J.; Frisch, W.; Sulák, M. Cretaceous transformation from passive to active continental margin in the Western Carpathians as indicated by the sedimentary record in the Infratatric Unit. Int. J. Earth Sci. 2008, 97, 799–819. [Google Scholar] [CrossRef]
- Putiš, M.; Danišík, M.; Ružička, P.; Schmiedt, I. Constraining exhumation pathway in an accretionary wedge by (U-Th)/He thermochronology—Case study on Meliatic nappes in the Western Carpathians. J. Geodyn. 2014, 81, 80–90. [Google Scholar] [CrossRef]
- Fediuková, E.; Hovorka, D.; Greguš, J. Compositional zoning of andradite from serpentinite at Dobšiná (West Carpathias). Věst. Ústr. Úst. Geol. 1976, 51, 339–345. [Google Scholar]
- Hovorka, D.; Jaroš, J.; Kratochvíl, M.; Mock, R. The Mesozoic ophiolites of the Western Carpathians. Krystalinikum 1984, 17, 143–157. [Google Scholar]
- Hovorka, D.; Ivan, P.; Jaroš, J.; Kratochvíl, M.; Reichwalder, P.; Rojkovič, I.; Spišiak, J.; Turanová, L. Ultramafic rocks of the Western Carpathians, Czechoslovakia; Geological Institute of Dionýz Štúr Publishers: Bratislava, Czechoslovakia, 1985; p. 258. [Google Scholar]
- Putiš, M.; Koppa, M.; Snárska, B.; Koller, F.; Uher, P. The blueschist-associated perovskite-andradite-bearing serpentinized harzburgite from Dobšiná (the Meliata Unit), Slovakia. J. Geosci. 2012, 57, 221–240. [Google Scholar] [CrossRef]
- Putiš, M.; Yang, Y.-H.; Vaculovič, T.; Koppa, M.; Li, X.-H.; Uher, P. Perovskite, reaction product of a harzburgite with Jurassic-Cretaceous accretionary wedge fluids (Western Carpathians, Slovakia): Evidence from the whole-rock and mineral trace element data. Geol. Carpath. 2016, 67, 133–146. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Chopelas, A. Vibrational spectroscopy of end-member silicate garnets. Phys. Chem. Miner. 1991, 17, 503–526. [Google Scholar] [CrossRef]
- Uher, P.; Kováčik, M.; Kubiš, M.; Shtukenberg, A.; Ozdín, D. Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. Am. Mineral. 2008, 93, 63–73. [Google Scholar] [CrossRef]
- Bačík, P.; Uher, P.; Kozakova, P.; Števko, M.; Ozdín, D.; Vaculovič, T. Vanadian and chromian garnet- and epidote-supergroup minerals in metamorphosed Paleozoic black shales from Cierna Lehota, Strazovske vrchy Mountains, Slovakia: Crystal chemistry and evolution. Mineral. Mag. 2018, 82, 889–911. [Google Scholar] [CrossRef]
- Peters, T. A water-bearing andradite from the Totalp serpentine (Davos, Switzerland). Am. Mineral. 1965, 50, 1482–1486. [Google Scholar]
- Passaglia, E.; Rinaldi, R. Katoite, a new member of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bulletin de la Société Française de Minéralogie et de Cristallographie 1984, 107, 605–618. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V. Garnets of the hydrogrossular-‘‘hydroandradite”-‘‘hydroschorlomite” series. Spec. Pap. Mineral. Soc. Pol. 2003, 22, 54–57. [Google Scholar]
- Galuskin, E. Minerals of the Vesuvianite Group from the Achtarandite Rocks (Wiluy River, Yakutia); University of Silesia Publishing House: Katowice, Poland, 2005; p. 192. [Google Scholar]
- Moore, R.K.; White, W.B. Electronic spectra of transition metal ions in silicate garnets. Can. Mineral. 1972, 11, 791–811. [Google Scholar]
- Manning, P.G. Optical absorption spectra of Fe3+ in octahedral and tetrahedral sites in natural garnets. Can. Mineral. 1972, 11, 826–839. [Google Scholar]
- Amthauer, G. Crystal chemistry and colour of chromium bearing garnets. Neues Jahrbuch für Mineralogie Abhandlungen 1976, 126, 158–186. [Google Scholar]
- Stockton, C.M.; Manson, D.V. Gem andradite garnets. Gems Gemol. 1983, 19, 202–208. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions I. J. Phys. Soc. Jpn. 1954, 5, 753–766. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions III. J. Phys. Soc. Jpn. 1956, 11, 864–877. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
P2O5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.00 | 0.02 | 0.02 |
SiO2 | 35.21 | 35.41 | 35.38 | 35.33 | 35.47 | 35.43 | 35.74 | 35.72 |
TiO2 | 0.05 | 0.05 | 0.04 | 0.03 | 0.00 | 0.03 | 0.08 | 0.04 |
Al2O3 | 0.33 | 0.34 | 0.31 | 0.32 | 0.40 | 0.34 | 0.37 | 0.32 |
V2O3 | 0.09 | 0.07 | 0.07 | 0.08 | 0.07 | 0.09 | 0.06 | 0.05 |
Cr2O3 | 1.24 | 1.50 | 2.31 | 2.14 | 1.54 | 1.34 | 0.97 | 0.63 |
Fe2O3 | 29.15 | 29.15 | 27.69 | 28.34 | 28.64 | 28.82 | 29.16 | 29.65 |
MgO | 0.20 | 0.23 | 0.20 | 0.17 | 0.34 | 0.23 | 0.20 | 0.21 |
CaO | 33.88 | 33.80 | 33.74 | 33.72 | 33.85 | 33.85 | 33.74 | 33.65 |
F | 0.08 | 0.11 | 0.09 | 0.11 | 0.09 | 0.08 | 0.09 | 0.10 |
O=F | −0.04 | −0.05 | −0.04 | −0.06 | −0.04 | −0.04 | −0.05 | −0.05 |
Total | 100.19 | 100.63 | 99.80 | 100.20 | 100.40 | 100.16 | 100.38 | 100.34 |
P5+ | 0.002 | 0.001 | 0.001 | 0.001 | 0.003 | 0.000 | 0.001 | 0.001 |
Si4+ | 2.975 | 2.977 | 2.993 | 2.981 | 2.984 | 2.990 | 3.003 | 3.004 |
F− | 0.021 | 0.028 | 0.023 | 0.030 | 0.023 | 0.022 | 0.024 | 0.026 |
Σ | 2.997 | 3.006 | 3.018 | 3.012 | 3.010 | 3.012 | 3.029 | 3.031 |
Ti4+ | 0.003 | 0.003 | 0.003 | 0.002 | 0.000 | 0.002 | 0.005 | 0.003 |
Al3+ | 0.033 | 0.034 | 0.031 | 0.032 | 0.040 | 0.034 | 0.037 | 0.032 |
V3+ | 0.006 | 0.005 | 0.005 | 0.006 | 0.005 | 0.006 | 0.004 | 0.003 |
Cr3+ | 0.083 | 0.100 | 0.155 | 0.143 | 0.102 | 0.089 | 0.064 | 0.042 |
Fe3+ | 1.845 | 1.837 | 1.757 | 1.793 | 1.806 | 1.823 | 1.840 | 1.873 |
Σ | 1.969 | 1.979 | 1.950 | 1.975 | 1.953 | 1.954 | 1.950 | 1.952 |
Mg2+ | 0.025 | 0.029 | 0.026 | 0.022 | 0.043 | 0.028 | 0.025 | 0.026 |
Ca2+ | 3.067 | 3.044 | 3.059 | 3.049 | 3.052 | 3.060 | 3.037 | 3.032 |
Σ | 3.092 | 3.073 | 3.084 | 3.071 | 3.095 | 3.089 | 3.063 | 3.058 |
K | Sc | Ti | V51 | Cr53 | Mn | Ge72 | As75 | Y89 | Mo95 | Gd157 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 392 | 16 | 103 | 305 | 3814 | 103 | 4 | 11 | 2 | 0 | 0 |
Max | 787 | 40 | 389 | 572 | 13331 | 224 | 13 | 22 | 5 | 1 | 2 |
Average | 523 | 25 | 244 | 444 | 9199 | 143 | 9 | 16 | 3 | 1 | 1 |
LOD | 48.7 | 2.1 | 11.4 | 0.7 | 9.2 | 7.8 | 3.8 | 9.1 | 0.1 | 0.1 | 0.1 |
Symmetry | Assignment | Demantoid Dobšiná | Andradite [72] |
---|---|---|---|
T2g + T1u | T(M) | 174 | 173 |
T2g + T1u | T(M) | 236 | 235 |
T2g | T(SiO4)mix | 265 | 264 |
Eg | T(SiO4) | 297 | 296 |
T2g + T1u | T(SiO4) | 311 | 311 |
? | ? | 343 | - |
Eg | ν2 | 352 | 352 |
A1g | R(SiO4) | 371 | 370 |
T2g + T1u | ν2 | 452 | 452 |
Eg | ν2 | 493 | 494 |
A1g | ν2 | 516 | 516 |
T2g + T1u | ν4 | 552 | 553 |
Eg | ν4 | 576 | 576 |
T2g + T1u | ν3 | 816 | 816 |
T2g + T1u | ν3 | 843 | 842 |
Eg | ν3 | 874 | 874 |
T2g + T1u | ν3 | 995 | 995 |
Chromophores | Demantoid Dobšiná |
---|---|
Fe3+ | 438 |
Fe3+ | 470 |
Cr3+ | 488 |
Fe3+ | 587 |
Cr3+ | 623 |
Fe3+ | 861 |
Fe3+ | 964 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štubňa, J.; Bačík, P.; Fridrichová, J.; Hanus, R.; Illášová, Ľ.; Milovská, S.; Škoda, R.; Vaculovič, T.; Čerňanský, S. Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobšiná, Slovakia. Minerals 2019, 9, 164. https://doi.org/10.3390/min9030164
Štubňa J, Bačík P, Fridrichová J, Hanus R, Illášová Ľ, Milovská S, Škoda R, Vaculovič T, Čerňanský S. Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobšiná, Slovakia. Minerals. 2019; 9(3):164. https://doi.org/10.3390/min9030164
Chicago/Turabian StyleŠtubňa, Ján, Peter Bačík, Jana Fridrichová, Radek Hanus, Ľudmila Illášová, Stanislava Milovská, Radek Škoda, Tomáš Vaculovič, and Slavomír Čerňanský. 2019. "Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobšiná, Slovakia" Minerals 9, no. 3: 164. https://doi.org/10.3390/min9030164
APA StyleŠtubňa, J., Bačík, P., Fridrichová, J., Hanus, R., Illášová, Ľ., Milovská, S., Škoda, R., Vaculovič, T., & Čerňanský, S. (2019). Gem-Quality Green Cr-Bearing Andradite (var. Demantoid) from Dobšiná, Slovakia. Minerals, 9(3), 164. https://doi.org/10.3390/min9030164