Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey
Abstract
:1. Introduction
2. Geological Setting
2.1. Gölcük Volcano
2.2. Aksu Diamas
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Mineralogy
4.2. Mineral Chemistry Comparison
4.2.1. Pyroxene
Gölcük Heavy Mineral Separate (HMS)
Aksu Diamas HMS
4.2.2. Chevkinite Group Minerals (CGMs)
Gölcük HMS
Aksu Diamas HMS
4.2.3. Zircon
Gölcük HMS
Aksu Diamas HMS
4.2.4. Magnetite
Gölcük HMS
Aksu Diamas HMS
5. Discussion
5.1. Mineral Chemistry Comparison
5.1.1. Pyroxene
5.1.2. Chevkinite
5.1.3. Zircon and Magnetite
5.2. Formation of the Aksu Diamas Placer Deposit
5.3. Implications for Exploration
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weng, Z.; Jowitt, S.M.; Mudd, G.M.; Haque, N. A detailed assessment of global rare earth element resources: Opportunities and challenges. Econ. Geol. 2015, 110, 1925–1952. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Mariano, A.N.; Mariano, A., Jr. Rare earth element ore geology of carbonatites. Rev. Econ. Geol. 2016, 18, 5–32. [Google Scholar]
- Dostal, J. Rare metal deposits associated with alkaline/peralkaline igneous rocks. Rev. Econ. Geol. 2016, 18, 33–54. [Google Scholar]
- Song, W.; Xu, C.; Smith, M.P.; Chakhmouradian, A.R.; Brenna, M.; Kynický, J.; Chen, W.; Yang, Y.; Deng, M.; Tang, H. Genesis of the world’s largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over∼1 b.y. Geology 2018, 46, 323–326. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Ling, M.-X.; Williams, I.S.; Yang, X.-Y.; Wang, C.Y.; Sun, W. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization. Ore Geol. Rev. 2018, 92, 73–83. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, Z.; Goldfarb, R.J.; Guo, X.; Wang, L. Rare earth element deposits in China. Rev. Econ. Geol. 2016, 18, 115–136. [Google Scholar]
- Xie, Y.; Li, Y.; Hou, Z.; Cooke, D.R.; Danyushevsky, L.; Dominy, S.C. Ore Genesis and Deposit Model of Carbonatite-host REE Deposits: The Mianning-Dechang REE Belt, Western Sichuan Province, China. Acta Geol. Sin.-Engl. Ed. 2014, 88, 475–477. [Google Scholar] [CrossRef]
- Hatch, G.P. Dynamics in the global market for rare earths. Elements 2012, 8, 341–346. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summary Rare Earths; USGS: Reston, VA, USA, 2018.
- Paulick, H.; Machacek, E. The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives. Resour. Policy 2017, 52, 134–153. [Google Scholar] [CrossRef]
- Charles, N.; Tuduri, J.; Guyonnet, D.; Melleton, J.; Pourret, O. Rare earth elements in Europe and Greenland: A geological potential? An overview. In Proceedings of the 12th meeting of the Society of Geology Applied to Mineral Deposits (SGA), Uppsala, Sweden, 12–15 August 2013; pp. 12–15. [Google Scholar]
- Goodenough, K.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.; Sadeghi, M.; Schiellerup, H.; Müller, A. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Sanematsu, K.; Watanabe, Y. Characteristics and genesis of ion adsorption-type rare earth element deposits. Rev. Econ. Geol. 2016, 18, 55–79. [Google Scholar]
- Deady, É.A.; Mouchos, E.; Goodenough, K.; Williamson, B.J.; Wall, F. A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral. Mag. 2016, 80, 43–61. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Kramarska, R.; Zieliński, G. Rare earth elements pilot studies of the baltic marine sands enriched in heavy minerals. Gospod. Surowcami Miner. 2016, 32, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Medlin, C.C.; Cas, R.A.F. The rare earth element (REE) mineralization potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals. Ore Geol. Rev. 2017, 86, 548–562. [Google Scholar] [CrossRef]
- Menendez, A.; James, R.H.; Roberts, S.; Peel, K.; Connelly, D. Controls on the distribution of rare earth elements in deep-sea sediments in the North Atlantic Ocean. Ore Geol. Rev. 2017, 87, 100–113. [Google Scholar] [CrossRef]
- Emsbo, P.; McLaughlin, P.I.; du Bray, E.A.; Anderson, E.D.; Vandenbroucke, T.; Zielinski, R.A. Rare earth elements in sedimentary phosphorite deposits: A global assessment. In Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016; Volume 18, pp. 101–113. [Google Scholar]
- Sengupta, D.; Van Gosen, B.S. Placer-type rare earth element deposits. Rev. Econ. Geol. 2016, 18, 81–100. [Google Scholar]
- Rose, E.R. Rare Earths of the Grenville Sub-Province, Ontario and Quebec; Department of Mines and Technical Surveys: Ottawa, ON, Canada, 1960.
- Jaireth, S.; Hoatson, D.M.; Miezitis, Y. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol. Rev. 2014, 62, 72–128. [Google Scholar] [CrossRef]
- Schwartz, M.O.; Rajah, S.S.; Askury, A.K.; Putthapiban, P.; Djaswadi, S. The southeast Asian tin belt. Earth-Sci. Rev. 1995, 38, 95–293. [Google Scholar] [CrossRef]
- Stanaway, K.J. Ten placer deposit models from five sedimentary environments. Appl. Earth Sci. 2012, 121, 43–51. [Google Scholar] [CrossRef]
- Elsner, H. Heavy Minerals of Economic Importance; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2009. [Google Scholar]
- Dill, H.G. Heavy minerals from ore guide to the deposit. Appl. Earth Sci. 2016, 125, 80–81. [Google Scholar] [CrossRef]
- Wall, F.; Rollat, A.; Pell, R.S. Responsible Sourcing of Critical Metals. Elements 2017, 13, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2017. [Google Scholar] [CrossRef]
- Sulekha Rao, N.; Sengupta, D.; Guin, R.; Saha, S.K. Natural radioactivity measurements in beach sand along southern coast of Orissa, eastern India. Environ. Earth Sci. 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Bonatti, S.A.G. Perrierite, nuovo minerale ritrovato nella sabbia di Nettuno (Roma). Atti Rendconti Accad. Lincei 1950, 9, 361–368. [Google Scholar]
- Clerici, C.; Morandini, A.F. Aspects of marine placer minerals: Economic potential of coastal deposits in Italy, testing procedures and market conditions. In Marine Minerals; Springer: Berlin/Heidelberg, Germany, 1987; pp. 515–532. [Google Scholar]
- RPA. Technical Report on the Aksu Diamas Rare Earth Elements and Minor Metals, Isparta District, Southwest Turkey, NI 43-101 Report. 2013. Available online: http://amrmineral.com/download/corporate/AMR_Aksu_Diamas_REE_NI43-101_PEA_May_6_2013_FINAL.pdf (accessed on 6 May 2013).
- AMEC. NI 43-101 Technical Report on the Aksu Diamas Rare Earth Element Project, Isparta District, Turkey. 2011. Available online: http://eurare.brgm-rec.fr/node/46505 (accessed on 1 January 2011).
- Robertson, A.H.F.; Parlak, O.; Ustaömer, T. Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Pet. Geosci. 2012, 18, 381–404. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. Geol. Soc. Lond. Spec. Publ. 2007, 282, 325–388. [Google Scholar] [CrossRef]
- Yilmaz, Y. New evidence and model on the evolution of the southeast Anatolian orogen. Geol. Soc. Am. Bull. 1993, 105, 251–271. [Google Scholar] [CrossRef]
- Yürür, M.T.; Chorowicz, J. Recent volcanism, tectonics and plate kinematics near the junction of the African, Arabian and Anatolian plates in the eastern Mediterranean. J. Volcanol. Geotherm. Res. 1998, 85, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koç, A.; Kaymakci, N.; van Hinsbergen, D.J.J.; Vissers, R.L.M. A Miocene onset of the modern extensional regime in the Isparta Angle: Constraints from the Yalvaç Basin (southwest Turkey). Int. J. Earth Sci. 2016, 105, 369–398. [Google Scholar] [CrossRef]
- Lustrino, M.; Wilson, M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev. 2007, 81, 1–65. [Google Scholar] [CrossRef]
- Prelević, D.; Akal, C.; Romer, R.L.; Mertz-Kraus, R.; Helvacı, C. Magmatic Response to Slab Tearing: Constraints from the Afyon Alkaline Volcanic Complex, Western Turkey. J. Petrol. 2015, 56, 527–562. [Google Scholar] [CrossRef] [Green Version]
- Berk Biryol, C.; Beck, S.L.; Zandt, G.; Özacar, A.A. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys. J. Int. 2011, 184, 1037–1057. [Google Scholar] [CrossRef] [Green Version]
- Özacar, A.; Biryol, C.B.; Beck, S.; Zandt, G.; Kaymakci, N.; Dilek, Y.; Bozkurt, E. Crust and upper mantle dynamics of Turkey inferred from passive seismology: Implications of segmented slab geometry. In Tectonic Crossroads: Evolving Orogens of Eurasia–Africa–Arabia, BTH23; Middle East Technical University: Ankara, Turkey, 2010; pp. 20–23. [Google Scholar]
- Karaoğlu, Ö.; Helvacı, C. Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos 2014, 192–195, 226–239. [Google Scholar] [CrossRef]
- Francalanci, L.; Innocenti, F.; Manetti, P.; Savasçin, M. Neogene alkaline volcanism of the Afyon-Isparta area, Turkey: Petrogenesis and geodynamic implications. Mineral. Petrol. 2000, 70, 285–312. [Google Scholar] [CrossRef]
- Dilek, Y.; Altunkaynak, Ş. Geochemistry of Neogene–Quaternary alkaline volcanism in western Anatolia, Turkey, and implications for the Aegean mantle. Int. Geol. Rev. 2010, 52, 631–655. [Google Scholar] [CrossRef]
- Poisson, A.; Yağmurlu, F.; Bozcu, M.; Şentürk, M. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geol. J. 2003, 38, 257–282. [Google Scholar] [CrossRef]
- Şenel, M. Geological Map of Turkey in 1/500.000 Scale: Konya Sheet; Publication of Mineral Research and Exploration Directorate of Turkey (MTA): Ankara, Turkey, 2002. [Google Scholar]
- Nielsen, J.K.; Görmüş, M.; Uysal, K.; Kanbur, S. First records of trace fossils from the Lake District, southwestern Turkey. Bull. Geosci. 2010, 85, 691–708. [Google Scholar] [CrossRef]
- Platevoet, B.; Scaillet, S.; Guillou, H.; Blamart, D.; Nomade, S.; Massault, M.; Poisson, A.; Elitok, Ö.; Özgür, N.; Yagmurlu, F. Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey. Quat. Rev. De L’association Française Pour L’étude Du Quat. 2008, 19, 147–156. [Google Scholar] [CrossRef]
- Collins, A.S.; Robertson, A.H.F. Lycian melange, southwestern Turkey: An emplaced Late Cretaceous accretionary complex. Geology 1997, 25, 255–258. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Danišík, M.; Siebel, W.; Elitok, Ö.; Chang, Y.W.; Shen, C.C. Late Pleistocene zircon ages for intracaldera domes at Gölcük (Isparta, Turkey). J. Volcanol. Geotherm. Res. 2014, 286, 24–29. [Google Scholar] [CrossRef]
- Cengiz, O.; Sener, E.; Yagmurlu, F. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). J. Asian Earth Sci. 2006, 27, 155–163. [Google Scholar] [CrossRef]
- Nemec, W.; Kazanici, N.; Mitchell, J.G. Pleistocene explosions and pyroclastic currents in west-central Anatolia. Boreas 1998, 27, 311–332. [Google Scholar] [CrossRef]
- Kumral, M.; Çoban, H.; Caran, Ş. Th-, U-and LREE-bearing grossular, chromian ferriallanite-(Ce) and chromian cerite-(Ce) in skarn xenoliths ejected from the Gölcük Maar Crater, Isparta, Anatolia, Turkey. Can. Mineral. 2007, 45, 1115–1129. [Google Scholar] [CrossRef]
- Alıcı, P.; Temel, A.; Gourgaud, A.; Kieffer, G.; Gundogdu, M.N. Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): Genesis of enriched alkaline magmas. J. Volcanol. Geotherm. Res. 1998, 85, 423–446. [Google Scholar] [CrossRef]
- Lefevre, C.; Bellon, H.; Poisson, A. Présence de leucitites dans le volcanisme Pliocene de la region d’Isparta (Taurides occidentales, Turquie). C. R. Des Séances De L’académie Des Sciences. Série 2mécanique-Phys. Chim. Sci. De L’universsciences De La Terre 1983, 297, 367–372. [Google Scholar]
- Özgür, N.; Pekdeger, A.; Schneider, H.; Bilgin, A. Pliocene volcanism in the Gölçük area, Isparta/western Taurides. In Proceedings of the IESCA, 1990 Proceedings, Izmir, Turkey, 1–6 October 1990; pp. 411–419. [Google Scholar]
- Platevoet, B.; Elitok, Ö.; Guillou, H.; Bardintzeff, J.M.; Yagmurlu, F.; Nomade, S.; Poisson, A.; Deniel, C.; Özgür, N. Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük volcano, Isparta Angle, Turkey: Origin and evolution of the high-K alkaline series. J. Asian Earth Sci. 2014, 92, 53–76. [Google Scholar] [CrossRef]
- Dolmaz, M.; Oksum, E.; Erbek, E.; Tutunsatar, H.; Elitok, O. The nature and origin of magnetic anomalies over the Gölcük caldera; Isparta; South-Western Turkey. Geofiz. Zhurnal 2018, 40, 145–156. [Google Scholar] [CrossRef]
- Elitok, Ö.; Özgür, N.; Drüppel, K.; Dilek, Y.; Platevoet, B.; Guillou, H.; Poisson, A.; Scaillet, S.; Satır, M.; Siebel, W. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. Int. Geol. Rev. 2010, 52, 454–504. [Google Scholar] [CrossRef]
- Dilek, Y.; Imamverdiyev, N.; Altunkaynak, Ş. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collision-induced mantle dynamics and its magmatic fingerprint. Int. Geol. Rev. 2010, 52, 536–578. [Google Scholar] [CrossRef]
- Kalyoncuoglu, U.Y. In situ gamma source radioactivity measurement in Isparta plain, Turkey. Environ. Earth Sci. 2015, 73, 3159–3175. [Google Scholar] [CrossRef]
- Alçiçek, M.C.; Brogi, A.; Capezzuoli, E.; Liotta, D.; Meccheri, M. Superimposed basin formation during Neogene–Quaternary extensional tectonics in SW-Anatolia (Turkey): Insights from the kinematics of the Dinar Fault Zone. Tectonophysics 2013, 608, 713–727. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to The Rock-Forming Minerals, 2nd ed.; Pearson: London, UK, 1992. [Google Scholar]
- Lacinska, A.M.; Rushton, J.C. The effect of X-ray energy overlaps on the results of chevkinite (Ce,La,Ca,Th)4(Fe2+, Mg)2(Ti, Fe3+)3Si4O22 microanalysis using SEM EDS-WDS. In Proceedings of the EMAS 2018, Microbeam Analysis in Earth Sciences, Bristol, UK, 4–7 September 2018. [Google Scholar]
- Gottardi, G. The crystal structure of perrierite. Am. Mineral. 1960, 45, 1–14. [Google Scholar]
- Parodi, G.; Ventura, G.; Mottana, A.; Raudsepp, M. Zr-rich non metamict perrierite-(Ce) from holocrystalline ejecta in the Sabatini volcanic complex (Latium, Italy). Mineral. Mag. 1994, 58, 607–614. [Google Scholar] [CrossRef]
- MacDonald, R.; Belkin, H. Compositional variation in minerals of the chevkinite group. Mineral. Mag. 2002, 66, 1075–1098. [Google Scholar] [CrossRef]
- Haggerty, S.E.; Mariano, A.N. Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contrib. Mineral. Petrol. 1983, 84, 365–381. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanalytical Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.-S. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The metamorphic mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Dare, S.A.; Barnes, S.-J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Miner. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Bagiński, B.; Macdonald, R. The chevkinite group: Underestimated accessory phases from a wide range of parageneses. Mineralogia 2013, 44, 99–114. [Google Scholar] [CrossRef]
- Macdonald, R.; Bagiñski, B.; Dzierżanowski, P.; Fettes, D.J.; Upton, B.G. Chevkinite-group minerals in UK Palaeogene granites: Underestimated REE-bearing accessory phases. Can. Mineral. 2013, 51, 333–347. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C.; Della Ventura, G.; Kartashov, P.M. Chevkinite-(Ce): Crystal structure and the effect of moderate radiation-induced damage on site-occupancy refinement. Can. Mineral. 2004, 42, 1013–1025. [Google Scholar] [CrossRef]
- Şenel, M. 1:250 000 Ölçekli Türkiye Jeoloji Haritaları No: 4 Isparta Paftası; Maden Tetkik ve Arama Genel Müdürlüğü: Istanbul, Turkey, 1997.
- Poisson, A.; Wernli, R.; Saǧular, E.K.; Temi̇ż, H. New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): Consequences for the Antalya Basin and the Eastern Mediterranean. Geol. J. 2003, 38, 311–327. [Google Scholar] [CrossRef]
- Harvey, A.M. The relationships between alluvial fans and fan channels within Mediterranean mountain fluvial systems. In Dryland Rivers: Hydrology and Geomorphology of Semi-Arid Channels; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 205–226. [Google Scholar]
- Macklin, M.; Fuller, I.; Lewin, J.; Maas, G.; Passmore, D.; Rose, J.; Woodward, J.; Black, S.; Hamlin, R.; Rowan, J. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quat. Sci. Rev. 2002, 21, 1633–1641. [Google Scholar] [CrossRef]
- Siddall, M.; Chappell, J.; Potter, E.-K. 7. Eustatic sea level during past interglacials. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2007; Volume 7, pp. 75–92. [Google Scholar]
- Stoppa, F.; Pirajno, F.; Schiazza, M.; Vladykin, N.V. State of the art: Italian carbonatites and their potential for critical-metal deposits. Gondwana Res. 2016, 37, 152–171. [Google Scholar] [CrossRef]
Commodity | Typical Mineralogy | Placer Types | Tonnage A | Grade—Proportion of HM in Concentrate (% by Mass) | Examples |
---|---|---|---|---|---|
Mixed (Fe, Zr, Ti, REE) | Magnetite; zircon; titanite; ilmenite; chevkinite; allanite | Ash-fall | 454 Mt | unpub % magnetite (MF) ca. 5% ilmenite (MF) ca. 8% zircon (NMF) ca. 15% titanite (NMF) ca. 0.6% allanite (MF) ca. 0.3% chevkinite (MF) | Aksu Diamas (Çanakli I and Çanakli II), Turkey |
Titanium | Ilmenite; leucoxene; rutile | Fluvial; beach; aeolian (dune) | <1 Mt–>50 Mt ilmenite <0.5 Mt–>6 Mt rutile | 37–82% ilmenite 1–15% rutile | Capel and Cooljarloo, Australia; OSCOM, India; Richards Bay, South Africa; Trail Ridge, USA |
Zirconium | Zircon | Beach; aeolian (dune) | <0.5 Mt–>8 Mt | 3–17% zircon | Capel and Cooljarloo, Australia; OSCOM, India; Richards Bay, South Africa; Trail Ridge, USA |
REE | Monazite; xenotime | Beach; aeolian (dune) | 0.7 Mt–1.9 Mt B | 1–5% monazite | OSCOM and Chavara, India |
Iron | Magnetite | Beach; aeolian (dune) | 0.1 Mt–>5 Mt | 4–55% magnetite | Natashquan River, Canada; Duna Choapa Norte, Chile; Waikato North Head, New Zealand; Ciaos and Cadman, Indonesia |
Sample | Gölcük | Aksu Diamas | Description |
---|---|---|---|
MPLV 049 | x | The base of the Aksu Diamas pit | |
MPLV 050 | x | Approx. 1 m above base of Aksu Diamas pit | |
MPLV 051 | x | Approx. 3 m above base of Aksu Diamas pit | |
MPLV 053 | x | HM concentrate from Aksu Diamas pilot plant | |
MPLV 054 | x | HM concentrate from Aksu Diamas pilot plant | |
MPLV 056 | x | Gölcük Tuff | |
MPLV 057 | x | Gölcük Tuff | |
MPLV 059 | x | Gölcük Tuff |
Sample | Type | SEM EDS | LA-ICP-MS | |||
---|---|---|---|---|---|---|
Mineral Phase | Pyroxene | Chevkinite | Apatite | Magnetite | Zircon | |
MPLV 049 | Aksu.Diamas HMS | x | x | x | ||
MPLV 050 | x | x | ||||
MPLV 051 | x | x | x | |||
MPLV 053 | x | |||||
MPLV 054 | x | x | ||||
MPLV 056 | Gölcük HMS | x | ||||
MPLV 057 | x | x | x | |||
MPLV 058 | x | |||||
MPLV 059 | x | x |
% Content | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Pyroxene + Amphibole | Magnetite-Ulvospinel | Biotite | Apatite | Volcanic Glass | Zircon | K-Feldspar | Fluorine | Lithics | Titanite | Garnet | Plagioclase | Chevkinite | Allanite | Magnesio-Chromite |
Gölcük volcanics MPLV059 | 67.7 | 9.7 | 8.8 | 7.4 | 3.2 | n.d. | 0.9 | 0.6 | 0.6 | 0.5 | 0.3 | 0.2 | 0.1 | n.d. | n.d. |
Aksu Diamas pit MPLV049 | 20.3 | 61.3 | 0.3 | 5.2 | n.d. | 2.2 | 0.3 | n.d. | 2.8 | 5.4 | 0.7 | n.d. | 0.9 | 0.3 | 0.3 |
Analysis No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
wt. % oxide | |||||||||||
WDS | TiO2 | 14.56 | 17.31 | 16.37 | 16.48 | 18.81 | 17.07 | 15.75 | 16.57 | 13.91 | 16.48 |
V2O5 | 0.44 | 0.44 | 0.94 | 0.20 | 0.26 | 0.21 | 0.25 | 0.24 | 0.37 | 0.20 | |
SrO | 0.17 | 0.27 | 0.24 | 0.28 | 0.31 | 0.32 | b.d. | 0.13 | b.d. | 0.28 | |
BaO | b.d. | b.d. | b.d. | b.d. | b.d. | b.d. | b.d. | 0.11 | b.d. | b.d. | |
La2O3 | 16.89 | 16.51 | 15.17 | 16.14 | 13.95 | 14.03 | 16.40 | 19.33 | 17.16 | 16.14 | |
Ce2O3 | 24.41 | 22.14 | 22.86 | 22.00 | 20.30 | 20.50 | 21.31 | 24.03 | 24.49 | 22.00 | |
Pr2O3 | 1.61 | 1.48 | 1.41 | 1.45 | 1.86 | 1.34 | 1.33 | 1.63 | 1.69 | 1.45 | |
Nd2O3 | 3.90 | 3.53 | 4.19 | 3.67 | 4.19 | 4.08 | 2.90 | 3.90 | 3.96 | 3.67 | |
Sm2O3 | b.d. | b.d. | b.d. | b.d. | 0.32 | 0.39 | b.d. | 0.26 | 0.26 | b.d. | |
EDS | MgO | 0.23 | 0.55 | 0.59 | 0.62 | 0.75 | 0.87 | 0.81 | b.d. | b.d. | 0.62 |
Al2O3 | 0.31 | 1.76 | 0.19 | 1.66 | 0.32 | 0.36 | 2.03 | 0.15 | 0.35 | 1.66 | |
SiO2 | 19.27 | 20.11 | 19.34 | 19.70 | 20.13 | 19.76 | 19.82 | 19.07 | 19.61 | 19.70 | |
CaO | 1.45 | 3.76 | 2.56 | 3.44 | 4.77 | 3.92 | 4.01 | 1.12 | 1.43 | 3.44 | |
MnO | 1.90 | 0.91 | 0.88 | 0.50 | 0.19 | 0.30 | 0.36 | 3.66 | 1.89 | 0.50 | |
FeO | 10.40 | 8.57 | 10.11 | 9.93 | 9.97 | 10.28 | 9.20 | 8.55 | 10.52 | 9.93 | |
ZrO2 | b.d. | 0.53 | b.d. | 0.35 | 0.58 | 0.54 | 0.80 | b.d. | b.d. | 0.35 | |
Nb2O5 | 1.96 | b.d. | 0.78 | 0.45 | 0.39 | 0.52 | 0.31 | 0.26 | 1.95 | 0.45 | |
ThO2 | 1.50 | b.d. | 4.05 | 1.44 | 2.41 | 4.55 | 3.52 | b.d. | 1.53 | 1.44 | |
Total | 99.0 | 97.9 | 99.7 | 98.3 | 99.5 | 99.0 | 98.8 | 99.0 | 99.1 | 98.3 | |
Formula based on 22 oxygens | |||||||||||
A | La | 1.33 | 1.24 | 1.17 | 1.23 | 1.04 | 1.07 | 1.25 | 1.53 | 1.36 | 1.23 |
Ce | 1.91 | 1.66 | 1.75 | 1.67 | 1.50 | 1.56 | 1.61 | 1.88 | 1.93 | 1.67 | |
Pr | 0.13 | 0.11 | 0.11 | 0.11 | 0.14 | 0.10 | 0.10 | 0.13 | 0.13 | 0.11 | |
Nd | 0.30 | 0.26 | 0.31 | 0.27 | 0.30 | 0.30 | 0.21 | 0.30 | 0.30 | 0.27 | |
Sm | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.00 | 0.02 | 0.02 | 0.00 | |
Ca | 0.33 | 0.82 | 0.58 | 0.76 | 1.03 | 0.87 | 0.89 | 0.26 | 0.33 | 0.76 | |
Ba | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
Sr | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.00 | 0.02 | 0.00 | 0.03 | |
Th | 0.07 | 0.00 | 0.19 | 0.07 | 0.11 | 0.21 | 0.17 | 0.00 | 0.08 | 0.07 | |
ΣA | 4.1 | 4.1 | 4.1 | 4.1 | 4.2 | 4.2 | 4.2 | 4.1 | 4.1 | 4.1 | |
ΣREE | 3.7 | 3.3 | 3.3 | 3.3 | 3.0 | 3.1 | 3.2 | 3.9 | 3.7 | 3.3 | |
B | Fe2+ Total | 1.863 | 1.465 | 1.772 | 1.719 | 1.683 | 1.782 | 1.586 | 1.532 | 1.889 | 1.719 |
Fe2+ (B) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
C | Fe2+ (C) | 0.86 | 0.47 | 0.77 | 0.72 | 0.68 | 0.78 | 0.59 | 0.53 | 0.89 | 0.72 |
Mg | 0.08 | 0.17 | 0.18 | 0.19 | 0.23 | 0.27 | 0.25 | 0.00 | 0.00 | 0.19 | |
Zr | 0.00 | 0.05 | 0.00 | 0.04 | 0.06 | 0.06 | 0.08 | 0.00 | 0.00 | 0.04 | |
V | 0.06 | 0.06 | 0.13 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.05 | 0.03 | |
Mn | 0.34 | 0.16 | 0.16 | 0.09 | 0.03 | 0.05 | 0.06 | 0.66 | 0.34 | 0.09 | |
Nb | 0.19 | 0.00 | 0.07 | 0.04 | 0.04 | 0.05 | 0.03 | 0.03 | 0.19 | 0.04 | |
Al | 0.08 | 0.42 | 0.05 | 0.41 | 0.08 | 0.09 | 0.49 | 0.04 | 0.09 | 0.41 | |
Ti (total-D) | 0.35 | 0.66 | 0.58 | 0.57 | 0.86 | 0.66 | 0.44 | 0.67 | 0.25 | 0.57 | |
ΣC | 2.0 | 2.0 | 1.9 | 2.1 | 2.0 | 2.0 | 2.0 | 2.0 | 1.8 | 2.1 | |
D | Ti total | 2.35 | 2.66 | 2.58 | 2.57 | 2.86 | 2.66 | 2.44 | 2.67 | 2.25 | 2.57 |
Ti in D | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
Si | 4.13 | 4.11 | 4.05 | 4.08 | 4.07 | 4.10 | 4.09 | 4.08 | 4.21 | 4.08 | |
Σcation | 13.2 | 13.2 | 13.1 | 13.3 | 13.2 | 13.3 | 13.3 | 13.2 | 13.2 | 13.3 |
Analysis No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
wt. % oxide | |||||||||||
WDS | TiO2 | 18.94 | 15.34 | 16.94 | 17.88 | 18.16 | 17.78 | 17.51 | 17.75 | 17.69 | 18.97 |
V2O5 | 0.27 | 0.24 | 0.26 | 0.19 | 0.27 | 0.20 | 0.47 | 0.48 | 0.22 | 0.22 | |
SrO | 0.25 | 0.14 | 0.17 | 0.13 | 0.21 | 0.19 | 0.40 | 0.31 | 0.26 | 0.21 | |
BaO | b.d. | b.d. | b.d. | 0.08 | b.d. | b.d. | b.d. | b.d. | b.d. | b.d. | |
La2O3 | 12.30 | 14.39 | 16.87 | 14.76 | 15.29 | 14.14 | 18.35 | 17.52 | 15.39 | 13.87 | |
Ce2O3 | 20.67 | 21.33 | 22.13 | 21.54 | 21.18 | 19.51 | 22.25 | 21.44 | 19.57 | 19.69 | |
Pr2O3 | 1.54 | 1.41 | 1.27 | 1.42 | 1.13 | 1.33 | 1.14 | 1.15 | 1.14 | 1.39 | |
Nd2O3 | 4.94 | 3.33 | 3.12 | 3.67 | 3.11 | 3.32 | 2.99 | 2.71 | 2.98 | 3.45 | |
Sm2O3 | 0.27 | b.d. | 0.24 | b.d. | b.d. | b.d. | b.d. | 0.31 | 0.25 | b.d. | |
EDS | MgO | 0.82 | 0.42 | 0.30 | 0.33 | 0.36 | 0.66 | 0.30 | 0.39 | 0.49 | 0.67 |
Al2O3 | 2.65 | 0.24 | 0.24 | 0.52 | 1.51 | 2.27 | 0.50 | 0.50 | 1.77 | 2.58 | |
SiO2 | 20.90 | 19.47 | 19.57 | 20.08 | 20.61 | 20.48 | 19.72 | 19.84 | 20.40 | 20.72 | |
CaO | 5.87 | 3.61 | 3.05 | 4.54 | 5.15 | 5.68 | 3.10 | 3.66 | 5.33 | 6.24 | |
MnO | b.d. | 0.56 | 0.56 | 0.41 | 0.33 | 0.32 | 0.68 | 0.53 | 0.27 | 0.22 | |
FeO | 7.78 | 11.69 | 11.84 | 11.27 | 9.95 | 8.72 | 11.60 | 11.13 | 9.28 | 7.79 | |
ZrO2 | 1.03 | 0.55 | b.d. | 0.61 | 0.67 | 1.49 | b.d. | 0.50 | 1.25 | 1.62 | |
Nb2O5 | b.d. | 1.49 | 0.44 | 0.68 | 0.34 | 0.42 | 0.29 | 0.37 | b.d. | 0.28 | |
ThO2 | 1.87 | 6.94 | 3.67 | 2.33 | 1.31 | 3.79 | 1.14 | 0.86 | 3.44 | 2.95 | |
Total | 100.1 | 101.1 | 100.7 | 100.4 | 99.6 | 100.3 | 100.4 | 99.5 | 99.7 | 100.9 | |
Formula based on 22 oxygens | |||||||||||
A | La | 0.88 | 1.11 | 1.29 | 1.10 | 1.12 | 1.03 | 1.39 | 1.32 | 1.14 | 0.99 |
Ce | 1.47 | 1.63 | 1.69 | 1.60 | 1.55 | 1.41 | 1.67 | 1.61 | 1.43 | 1.40 | |
Pr | 0.11 | 0.11 | 0.10 | 0.11 | 0.08 | 0.10 | 0.09 | 0.09 | 0.08 | 0.10 | |
Nd | 0.34 | 0.25 | 0.23 | 0.27 | 0.22 | 0.23 | 0.22 | 0.20 | 0.21 | 0.24 | |
Sm | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | |
Ca | 1.22 | 0.81 | 0.68 | 0.98 | 1.10 | 1.20 | 0.68 | 0.80 | 1.14 | 1.29 | |
Ba | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Sr | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 | 0.04 | 0.03 | 0.02 | |
Th | 0.08 | 0.33 | 0.17 | 0.11 | 0.06 | 0.17 | 0.05 | 0.04 | 0.16 | 0.13 | |
ΣA | 4.2 | 4.3 | 4.2 | 4.2 | 4.2 | 4.2 | 4.1 | 4.1 | 4.2 | 4.2 | |
ΣREE | 2.8 | 3.1 | 3.3 | 3.1 | 3.0 | 2.8 | 3.4 | 3.2 | 2.9 | 2.7 | |
B | Fe2+ Total | 1.26 | 2.04 | 2.06 | 1.91 | 1.66 | 1.44 | 1.99 | 1.91 | 1.55 | 1.26 |
Fe2+ (B) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
C | Fe2+ (C) | 0.26 | 1.04 | 1.06 | 0.91 | 0.66 | 0.44 | 0.99 | 0.91 | 0.55 | 0.26 |
Mg | 0.24 | 0.13 | 0.09 | 0.10 | 0.11 | 0.20 | 0.09 | 0.12 | 0.15 | 0.19 | |
Zr | 0.10 | 0.06 | 0.00 | 0.06 | 0.07 | 0.14 | 0.00 | 0.05 | 0.12 | 0.15 | |
V | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.06 | 0.07 | 0.03 | 0.03 | |
Mn | 0.00 | 0.10 | 0.10 | 0.07 | 0.06 | 0.05 | 0.12 | 0.09 | 0.05 | 0.04 | |
Nb | 0.00 | 0.14 | 0.04 | 0.06 | 0.03 | 0.04 | 0.03 | 0.03 | 0.00 | 0.02 | |
Al | 0.61 | 0.06 | 0.06 | 0.12 | 0.36 | 0.53 | 0.12 | 0.12 | 0.42 | 0.59 | |
Ti (total-D) | 0.77 | 0.41 | 0.65 | 0.72 | 0.72 | 0.64 | 0.70 | 0.73 | 0.66 | 0.76 | |
ΣC | 2.0 | 2.0 | 2.0 | 2.1 | 2.0 | 2.1 | 2.1 | 2.1 | 2.0 | 2.0 | |
D | Ti total | 2.77 | 2.41 | 2.65 | 2.72 | 2.72 | 2.64 | 2.70 | 2.73 | 2.66 | 2.76 |
Ti in D | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
Si | 4.06 | 4.07 | 4.07 | 4.06 | 4.11 | 4.04 | 4.05 | 4.06 | 4.09 | 4.01 | |
ΣCation | 13.2 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.3 | 13.2 |
Sample | Ti | Y | Nb | Ta | La | Ce | Pr | Nd | Sm | Eu | Gd | Dy | Er | Yb | Lu | Lan/Lun |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gölcük MPLV057 | 7.7 | 1073 | 4.7 | 1.2 | 0.06 | 162.2 | 0.34 | 7.1 | 9.3 | 3.8 | 31 | 92 | 150 | 391 | 69 | 0.00010 |
6.0 | 1165 | 4.0 | 1.1 | 0.04 | 178.7 | 0.55 | 8.4 | 12.3 | 3.7 | 31 | 99 | 149 | 398 | 68 | 0.00006 | |
9.4 | 745 | 3.1 | 1.2 | 0.02 | 117.3 | 0.34 | 5.6 | 6.8 | 2.3 | 24 | 63 | 96 | 242 | 42 | 0.00004 | |
10.9 | 2209 | 9.7 | 2.2 | 0.19 | 443.0 | 1.85 | 31.4 | 31.7 | 10.5 | 73 | 203 | 271 | 617 | 105 | 0.00019 | |
13.3 | 2290 | 5.1 | 1.0 | 0.40 | 267.3 | 1.55 | 28.8 | 31.6 | 11.2 | 75 | 206 | 277 | 668 | 118 | 0.00036 | |
2.8 | 1446 | 3.3 | 0.8 | 0.26 | 112.3 | 0.66 | 8.8 | 13.4 | 5.4 | 38 | 117 | 196 | 551 | 105 | 0.00026 | |
8.1 | 819 | 2.9 | 1.0 | 0.02 | 129.0 | 0.34 | 6.1 | 7.5 | 2.7 | 23 | 65 | 112 | 291 | 52 | 0.00004 | |
7.5 | 979 | 4.7 | 1.3 | 0.00 | 118.1 | 0.23 | 4.4 | 5.8 | 2.0 | 20 | 72 | 136 | 369 | 68 | 0.00000 | |
5.1 | 1326 | 4.6 | 1.4 | 0.07 | 192.4 | 0.51 | 10.0 | 12.4 | 3.7 | 33 | 103 | 168 | 425 | 72 | 0.00010 | |
5.9 | 1597 | 4.9 | 1.3 | 0.12 | 186.2 | 0.90 | 15.2 | 17.5 | 6.0 | 48 | 139 | 212 | 526 | 92 | 0.00014 | |
5.6 | 1215 | 3.1 | 0.8 | 0.07 | 117.5 | 0.54 | 9.4 | 11.0 | 3.1 | 30 | 102 | 171 | 431 | 76 | 0.00010 | |
7.7 | 1215 | 4.1 | 1.0 | 0.07 | 141.4 | 0.53 | 9.3 | 11.5 | 3.8 | 33 | 102 | 168 | 435 | 72 | 0.00010 | |
6.8 | 1205 | 5.8 | 1.3 | 0.05 | 162.2 | 0.37 | 6.8 | 8.2 | 2.6 | 25 | 95 | 164 | 418 | 75 | 0.00007 | |
11.7 | 1818 | 6.5 | 1.7 | 0.26 | 210.1 | 0.85 | 17.3 | 21.9 | 5.8 | 54 | 161 | 255 | 578 | 97 | 0.00029 | |
7.8 | 863 | 2.0 | 0.4 | 0.35 | 118.2 | 0.56 | 8.4 | 8.6 | 2.5 | 24 | 70 | 116 | 292 | 54 | 0.00069 | |
14.8 | 1115 | 3.6 | 1.0 | 0.69 | 167.4 | 0.52 | 8.5 | 10.3 | 3.5 | 31 | 99 | 160 | 392 | 69 | 0.00107 | |
12.6 | 241 | 1.1 | 0.4 | 0.01 | 41.9 | 0.13 | 2.1 | 2.7 | 0.9 | 7 | 23 | 35 | 81 | 14 | 0.00004 | |
8.3 | 1697 | 2.2 | 0.9 | 0.11 | 97.8 | 0.96 | 15.8 | 20.7 | 6.2 | 53 | 156 | 223 | 494 | 84 | 0.00014 | |
5.4 | 1476 | 8.9 | 2.2 | 0.04 | 181.0 | 0.21 | 4.4 | 5.8 | 2.0 | 21 | 108 | 216 | 602 | 99 | 0.00004 | |
9.8 | 910 | 2.5 | 0.9 | 0.02 | 84.2 | 0.45 | 7.8 | 8.3 | 2.7 | 26 | 81 | 128 | 314 | 57 | 0.00004 | |
9.1 | 604 | 2.3 | 0.6 | 0.46 | 86.8 | 0.30 | 3.8 | 5.6 | 1.8 | 15 | 52 | 86 | 216 | 39 | 0.00128 | |
6.3 | 660 | 2.7 | 0.8 | 0.06 | 103.9 | 0.27 | 4.8 | 5.8 | 1.7 | 19 | 57 | 96 | 237 | 42 | 0.00014 | |
7.5 | 1115 | 5.0 | 0.9 | 0.05 | 125.8 | 0.31 | 6.2 | 6.2 | 2.0 | 24 | 80 | 151 | 382 | 71 | 0.00007 | |
8.2 | 699 | 2.9 | 1.0 | 0.22 | 103.0 | 0.39 | 5.7 | 6.5 | 2.1 | 20 | 65 | 102 | 246 | 44 | 0.00054 | |
5.7 | 833 | 2.3 | 0.6 | 0.04 | 80.1 | 0.23 | 4.1 | 5.9 | 1.8 | 18 | 65 | 115 | 298 | 54 | 0.00007 | |
3.4 | 424 | 1.9 | 0.5 | 0.03 | 71.8 | 0.15 | 3.1 | 3.1 | 0.9 | 8 | 29 | 59 | 158 | 28 | 0.00009 | |
9.4 | 3093 | 16.8 | 3.5 | 0.06 | 379.6 | 0.90 | 18.8 | 22.5 | 8.1 | 68 | 227 | 400 | 1019 | 176 | 0.00004 | |
10.7 | 983 | 4.5 | 1.4 | 0.04 | 147.8 | 0.41 | 7.4 | 10.1 | 2.9 | 29 | 85 | 133 | 336 | 59 | 0.00008 | |
7.5 | 1155 | 2.1 | 0.6 | 0.04 | 85.3 | 0.48 | 7.8 | 8.6 | 3.0 | 28 | 91 | 155 | 410 | 74 | 0.00005 | |
10.7 | 393 | 0.9 | 0.4 | 0.00 | 58.8 | 0.21 | 3.6 | 4.9 | 1.8 | 13 | 37 | 55 | 132 | 24 | 0.00000 | |
10.6 | 1597 | 2.4 | 0.7 | 0.89 | 109.0 | 0.99 | 17.3 | 17.9 | 5.3 | 46 | 142 | 224 | 529 | 90 | 0.00105 |
Sample | Ti | Y | Nb | Ta | La | Ce | Pr | Nd | Sm | Eu | Gd | Dy | Er | Yb | Lu | Lan/Lun |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aksu Diamas MPLV051 | 10.3 | 869 | 1.6 | 0.5 | 0.13 | 68.4 | 1.01 | 17.1 | 18.9 | 6.7 | 37 | 90 | 119 | 343 | 45 | 0.00031 |
10.5 | 736 | 2.5 | 0.7 | 0.07 | 130.5 | 0.51 | 8.5 | 11.1 | 4.0 | 25 | 66 | 107 | 293 | 42 | 0.00017 | |
7.1 | 1012 | 1.6 | 0.5 | 0.10 | 83.2 | 1.03 | 19.0 | 18.1 | 6.5 | 40 | 106 | 141 | 385 | 47 | 0.00023 | |
7.5 | 1126 | 2.5 | 0.8 | 0.10 | 97.4 | 1.05 | 15.0 | 17.7 | 5.5 | 40 | 109 | 156 | 467 | 60 | 0.00018 | |
7.3 | 435 | 1.0 | 0.4 | 0.02 | 40.2 | 0.27 | 4.3 | 6.7 | 2.7 | 18 | 49 | 66 | 173 | 22 | 0.00010 | |
8.6 | 556 | 3.5 | 1.1 | 0.03 | 90.2 | 0.19 | 4.6 | 5.6 | 2.0 | 16 | 51 | 77 | 248 | 33 | 0.00010 | |
5.2 | 431 | 1.6 | 0.4 | 0.05 | 102.0 | 0.27 | 4.5 | 6.4 | 1.9 | 15 | 40 | 62 | 185 | 24 | 0.00020 | |
9.9 | 288 | 0.9 | 0.2 | 0.02 | 57.3 | 0.19 | 3.6 | 3.9 | 1.8 | 12 | 29 | 42 | 123 | 15 | 0.00012 | |
6.3 | 1145 | 2.2 | 1.0 | 0.17 | 83.2 | 0.95 | 16.6 | 20.2 | 6.0 | 42 | 108 | 157 | 457 | 58 | 0.00031 | |
4.8 | 1828 | 4.2 | 0.9 | 0.20 | 182.0 | 1.35 | 23.4 | 26.5 | 8.2 | 63 | 176 | 244 | 677 | 82 | 0.00026 | |
7.9 | 312 | 1.4 | 0.5 | 0.00 | 69.4 | 0.21 | 3.7 | 3.7 | 1.3 | 10 | 30 | 47 | 139 | 19 | 0.00002 | |
11.1 | 1441 | 6.7 | 1.8 | 0.26 | 300.6 | 0.97 | 19.8 | 24.6 | 8.4 | 53 | 146 | 200 | 558 | 72 | 0.00038 | |
7.3 | 1079 | 8.7 | 2.5 | 0.04 | 174.7 | 0.40 | 7.7 | 9.8 | 3.7 | 27 | 91 | 156 | 495 | 71 | 0.00005 | |
9.7 | 521 | 1.5 | 0.3 | 0.03 | 63.5 | 0.22 | 4.4 | 4.6 | 2.2 | 14 | 42 | 71 | 238 | 34 | 0.00008 | |
6.4 | 244 | 0.8 | 0.2 | 0.00 | 33.3 | 0.06 | 1.3 | 2.2 | 0.9 | 6 | 19 | 37 | 124 | 17 | 0.00000 | |
8.1 | 602 | 3.4 | 0.9 | 0.05 | 129.4 | 0.35 | 6.7 | 8.5 | 2.9 | 19 | 58 | 85 | 254 | 33 | 0.00016 | |
6.8 | 471 | 2.2 | 1.5 | 0.00 | 20.6 | 0.05 | 1.0 | 1.9 | 0.5 | 7 | 36 | 86 | 306 | 51 | 0.00000 | |
14.0 | 668 | 1.4 | 0.6 | 0.03 | 63.5 | 0.57 | 10.0 | 11.2 | 4.2 | 28 | 75 | 99 | 245 | 34 | 0.00008 | |
9.1 | 617 | 3.1 | 0.9 | 0.03 | 113.3 | 0.36 | 5.8 | 7.2 | 2.4 | 16 | 56 | 90 | 262 | 38 | 0.00008 | |
4.6 | 1707 | 5.8 | 1.5 | 0.50 | 148.7 | 1.29 | 18.1 | 21.4 | 6.7 | 50 | 153 | 244 | 720 | 93 | 0.00058 | |
13.8 | 790 | 5.5 | 1.6 | 0.71 | 170.6 | 0.62 | 13.1 | 15.9 | 5.7 | 32 | 82 | 108 | 285 | 36 | 0.00214 | |
9.3 | 981 | 5.5 | 1.1 | 0.03 | 162.2 | 0.29 | 7.0 | 8.6 | 2.5 | 25 | 82 | 137 | 404 | 62 | 0.00006 | |
16.6 | 1467 | 4.7 | 1.4 | 0.23 | 312.0 | 2.24 | 40.8 | 42.4 | 15.8 | 81 | 166 | 192 | 399 | 51 | 0.00049 | |
9.0 | 1004 | 1.5 | 0.7 | 0.08 | 77.0 | 0.76 | 13.7 | 15.1 | 4.4 | 35 | 101 | 145 | 369 | 50 | 0.00017 | |
10.9 | 349 | 1.4 | 0.5 | 0.03 | 55.3 | 0.15 | 3.2 | 4.4 | 1.5 | 11 | 32 | 51 | 150 | 22 | 0.00013 | |
5.5 | 1102 | 2.3 | 0.7 | 0.08 | 86.6 | 0.76 | 13.3 | 14.8 | 5.0 | 36 | 104 | 154 | 424 | 64 | 0.00014 | |
13.0 | 1577 | 3.7 | 1.0 | 0.19 | 189.3 | 1.29 | 24.8 | 29.3 | 9.9 | 65 | 161 | 230 | 548 | 81 | 0.00024 | |
11.7 | 864 | 5.3 | 1.8 | 0.06 | 133.1 | 0.43 | 6.9 | 10.9 | 4.2 | 32 | 93 | 129 | 349 | 46 | 0.00014 | |
8.4 | 1018 | 4.0 | 1.2 | 0.08 | 113.3 | 0.69 | 11.6 | 13.8 | 5.4 | 33 | 97 | 156 | 467 | 64 | 0.00014 | |
4.0 | 1897 | 4.4 | 0.9 | 0.19 | 175.8 | 1.29 | 21.6 | 20.9 | 7.1 | 51 | 154 | 266 | 768 | 113 | 0.00018 | |
12.4 | 927 | 6.3 | 2.6 | 0.03 | 88.6 | 0.20 | 6.0 | 9.5 | 2.6 | 26 | 83 | 143 | 352 | 56 | 0.00006 | |
7.0 | 1544 | 8.6 | 1.6 | 0.14 | 287.0 | 0.59 | 12.0 | 12.0 | 3.9 | 35 | 113 | 210 | 587 | 98 | 0.00015 | |
9.8 | 1574 | 3.3 | 0.9 | 0.19 | 130.1 | 1.09 | 18.5 | 22.6 | 6.2 | 53 | 144 | 221 | 581 | 87 | 0.00023 | |
8.6 | 1386 | 2.0 | 0.8 | 0.11 | 78.7 | 0.92 | 15.1 | 19.3 | 6.4 | 47 | 127 | 189 | 487 | 75 | 0.00016 | |
5.6 | 1390 | 3.1 | 0.9 | 0.11 | 94.5 | 0.83 | 13.4 | 14.4 | 4.7 | 41 | 121 | 199 | 520 | 85 | 0.00013 | |
8.6 | 996 | 4.4 | 1.3 | 0.12 | 150.8 | 0.36 | 6.0 | 7.6 | 2.5 | 24 | 79 | 145 | 382 | 63 | 0.00020 | |
10.2 | 1426 | 5.0 | 0.8 | 0.08 | 193.4 | 0.42 | 8.2 | 12.0 | 4.2 | 37 | 119 | 195 | 473 | 78 | 0.00011 | |
15.6 | 912 | 3.6 | 1.3 | 0.08 | 145.5 | 0.51 | 9.1 | 13.2 | 4.4 | 31 | 86 | 131 | 319 | 55 | 0.00016 | |
7.5 | 640 | 2.8 | 0.7 | 0.04 | 100.2 | 0.22 | 5.3 | 6.4 | 2.4 | 18 | 56 | 90 | 232 | 42 | 0.00011 |
Sample | Gölcük MPLV058 | Aksu Diamas MPLV050 | ||||
---|---|---|---|---|---|---|
N = 25 | N = 13 | |||||
Min | Max | Mean | Min | Max | Mean | |
Ti (wt. %) | 2.57 | 2.73 | 2.61 | 1.14 | 3.12 | 2.17 |
Al (wt. %) | 0.523 | 2.08 | 1.22 | 0.364 | 1.30 | 0.770 |
Mg (wt. %) | 0.369 | 1.20 | 0.658 | 0.174 | 1.45 | 0.567 |
V (wt. %) | 0.185 | 0.218 | 0.209 | 0.084 | 0.200 | 0.166 |
Mn (wt. %) | 0.257 | 0.618 | 0.393 | 0.413 | 0.929 | 0.542 |
Co (mg/kg) | 73.9 | 174 | 122 | 52.0 | 214 | 115 |
Zn (mg/kg) | 505 | 1099 | 730 | 696 | 1286 | 893 |
Cr (mg/kg) | 8.30 | 127 | 64.9 | 13.9 | 312 | 85.8 |
P (mg/kg) | 53.0 | 1550 | 186 | 76.0 | 1350 | 432 |
Ni (mg/kg) | 26.2 | 117 | 41.5 | 10.8 | 186 | 73.5 |
Cu (mg/kg) | 3.18 | 810 | 44.9 | 0.550 | 114 | 19.7 |
Y (mg/kg) | 0.029 | 7.40 | 0.628 | 0.041 | 9.00 | 2.53 |
Zr (mg/kg) | 26.8 | 52.8 | 34.5 | 0.830 | 49.2 | 22.4 |
Nb (mg/kg) | 5.72 | 16.4 | 11.4 | 0.026 | 19.5 | 11.7 |
Sn (mg/kg) | 5.90 | 20.6 | 14.5 | 6.90 | 16.3 | 10.7 |
Pb (mg/kg) | 0.032 | 8.39 | 1.40 | 0.052 | 2.54 | 0.707 |
Ni/Cr | 0.239 | 4.04 | 0.839 | 0.277 | 1.88 | 1.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deady, E.; Lacinska, A.; Goodenough, K.M.; Shaw, R.A.; Roberts, N.M.W. Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals 2019, 9, 208. https://doi.org/10.3390/min9040208
Deady E, Lacinska A, Goodenough KM, Shaw RA, Roberts NMW. Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals. 2019; 9(4):208. https://doi.org/10.3390/min9040208
Chicago/Turabian StyleDeady, Eimear, Alicja Lacinska, Kathryn M. Goodenough, Richard A. Shaw, and Nick M. W. Roberts. 2019. "Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey" Minerals 9, no. 4: 208. https://doi.org/10.3390/min9040208
APA StyleDeady, E., Lacinska, A., Goodenough, K. M., Shaw, R. A., & Roberts, N. M. W. (2019). Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals, 9(4), 208. https://doi.org/10.3390/min9040208