Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece)
Abstract
:1. Introduction
2. Geological Context
2.1. The Southern Rhodope Core Complex and Thassos Island
2.2. The Trikorfo Area
3. Materials and Methods
3.1. Bulk-Rock Analyses
3.2. Electron Probe MicroAnalyses (EPMA)
3.3. Laser Ablation-Inductively Coupled Plasma Mass Spectroscopy (LA-ICPMS)
3.4. UV-Visible-Near Infrared Absorption Spectra
3.5. Phase Diagram Calculation
4. Results
4.1. Tectonic and Structural Setting of Al-Silicates
4.2. Lithological Units and Rock Sampling
4.3. Mineralogy and Mineral Chemistry of Paragneisses/Mica Schists of the Metamorphic Unit at Trikorfo
4.4. Mineralogy and Mineral Chemistry of Green-Colored Horizons
4.5. Mineralogy and Mineral Chemistry of Calc-Silicate-Dominated Horizons
4.6. Mineralogy and Mineral Chemistry of Mn-rich Schist Layers and Quartz Lenses
4.7. Mineralogy and Mineral Chemistry of Kyanite–Quartz Veins
4.7.1. Different Colors of Kyanite Crystals
4.7.2. Bulk Element Concentration of Individual Kyanite Crystals
4.7.3. EPMA X-ray Maps and Element Distribution
4.7.4. Orange Kyanite and Green Andalusite Assemblages
4.7.5. LA-ICPMS Profiles
4.7.6. UV-Near-Infrared Spectroscopy
4.8. Phase Diagram Calculation of the Paragneiss
5. Discussion
5.1. Colored Minerals and Cation Substitution in the Trikorfo Area, Thassos Island
5.2. Metamorphic Parageneses versus Metasomatic Assemblages
5.3. PT-Deformation Conditions of Metamorphic Equilibrium and Metasomatic Reactions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Abs-Wurmbach, I.; Langer, K. Synthetic Mn3+-kyanite and viridine, (Al2-xMnx3+)SiO5, in the system Al2O3-MnO-MnO2-SiO2. Contrib. Mineral. Petrol. 1975, 49, 21–38. [Google Scholar] [CrossRef]
- Abs-Wurmbach, I.; Langer, K.; Seifert, F.; Tillmanns, E. The crystal chemistry of (Mn3+, Fe3+)-substituted andalusites (viridines and kanonaite), (Al1-x-yMnx3+Fey3+)2(O|SiO4): Crystal structure refinements, Mössbauer, and polarized optical absorption spectra. Z. Für Krist. 1981, 155, 81–113. [Google Scholar]
- Pearson, G.R.; Shaw, D.M. Trace elements in kyanite, sillimanite and andalusite. Am. Mineral. 1960, 45, 808–817. [Google Scholar]
- Müller, A.; van den Kerkhof, A.M.; Selbekk, R.S.; Broekmans, M.A.T.M. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications. Contrib. Mineral. Petrol. 2016, 171, 70. [Google Scholar] [CrossRef]
- Faye, G.H.; Nickel, E.H. On the origin of colour and pleochroism of kyanite. Can. Mineral. 1969, 10, 35–46. [Google Scholar]
- Meinhold, K.D.; Frisch, T. Manganese-silicate-bearing metamorphic rocks from central Tanzania. Schweiz. Mineral. Petrogr. Mitt. 1970, 50, 493–507. [Google Scholar]
- Chadwick, K.M.; Rossman, G.R. Orange kyanite from Tanzania. Gems Gemol. 2009, 45, 146–147. [Google Scholar]
- Gaft, M.; Nagli, L.; Panczer, G.; Rossman, G.R.; Reisfeld, R. Laser-induced time-resolved luminescence of orange kyanite Al2SiO5. Opt. Mater. 2011, 33, 1476–1480. [Google Scholar] [CrossRef]
- Wildner, M.; Beran, A.; Koller, F. Spectroscopic characterisation and crystal field calculations of varicoloured kyanites from Loliondo, Tanzania. Mineral. Petrol. 2013, 107, 289–310. [Google Scholar] [CrossRef]
- Hålenius, U. A spectroscopic investigation of manganian andalusite. Can. Mineral. 1978, 16, 567–575. [Google Scholar]
- Smith, G.; Hålenius, U.; Langer, K. Low temperature spectral studies of Mn3+-bearing andalusite and epidote type minerals in the range 30,000–5000 cm−1. Phys. Chem. Miner. 1982, 8, 136–142. [Google Scholar] [CrossRef]
- Klemm, G. Uber Viridin, eine Abart des Andalusites. Not. Ver Erdk Darmstadt 1911, 32, 4–13. [Google Scholar]
- Burns Roger, G. Mineralogical Applications of Crystal Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1970; ISBN 0-521-43077-1. [Google Scholar]
- Manning, P.G. The optical absorption spectra of the garnets almandine-pyrope, pyrope and spessartine and some structural interpretations of mineralogical significance. Can. Mineral. 1967, 9, 237–251. [Google Scholar]
- Abs-Wurmbach, I.; Peters, T. The Mn-Al-Si-O system: An experimental study of phase relations applied to parageneses in manganese-rich ores and rocks. Eur. J. Mineral. 1999, 11, 45–68. [Google Scholar] [CrossRef]
- Jöns, N.; Schenk, V. Petrology of whiteschists and associated rocks at Mautia Hill (Tanzania): Fluid infiltration during high-grade metamorphism. J. Petrol. 2004, 45, 1959–1981. [Google Scholar] [CrossRef]
- Reinecke, T. Phase relationships of sursassite and other Mn-silicates in highly oxidized low-grade, high-pressure metamorphic rocks from Evvia and Andros islands, Greece. Contrib. Mineral. Petrol. 1986, 94, 110–126. [Google Scholar] [CrossRef]
- Keskinen, M.; Liou, J.G. Stability relations of Mn–Fe–Al piemontite. J. Metamorph. Geol. 1987, 5, 495–507. [Google Scholar] [CrossRef]
- Voudouris, P.; Graham, I.; Melfos, V.; Sutherland, L.; Zaw, K. Gemstones in Greece: Mineralogy and Crystallizing Environment. In Proceedings of the 34th IGC Conference, Brisbane, Australia, 5–10 August 2012. [Google Scholar]
- Voudouris, P.; Graham, I.; Mavrogonatos, K.; Su, S.; Papavasiliou, K.; Farmaki, M.-V.; Panagiotidis, P. Mn-andalusite, spessartine, Mn-grossular, piemontite and Mn-zoisite/clinozoisite from Trikorfo, Thassos island, Greece. Bull. Geol. Soc. Greece 2016, 50, 2068–2078. [Google Scholar] [CrossRef]
- Klemme, S.; Berndt, J.; Mavrogonatos, C.; Flemetakis, S.; Baziotis, I.; Voudouris, P.; Xydous, S. On the color and genesis of prase (green quartz) and Amethyst from the island of Serifos, Cyclades, Greece. Minerals 2018, 8, 487. [Google Scholar] [CrossRef]
- Ottens, B.; Voudouris, P. Griechenland: Mineralien, Fundorte, Lagerstätten; Christian Weise Verlag: München, Germany, 2018. [Google Scholar]
- Voudouris, P.; Melfos, V.; Mavrogonatos, C.; Tarantola, A.; Götze, J.; Alfieris, D.; Maneta, V.; Psimis, I. Amethyst Occurrences in Tertiary Volcanic Rocks of Greece: Mineralogical, Fluid Inclusion and Oxygen Isotope Constraints on Their Genesis. Minerals 2018, 8, 324. [Google Scholar] [CrossRef]
- Dimitriadis, E. Sillimanite grade metamorphism in Thasos island, Rhodope massif, Greece and its regional significance. Geol. Rhodopica 1989, 1, 190–201. [Google Scholar]
- Voudouris, P.; Constantinidou, S.; Kati, M.; Mavrogonatos, C.; Kanellopoulos, C.; Volioti, E. Genesis of alpinotype fissure minerals from Thasos island, Northern Greece—Mineralogy, mineral chemistry and crystallizing environment. Bull. Geol. Soc. Greece 2013, 47, 468–476. [Google Scholar] [CrossRef]
- Vason, M.; Martin, S. Metamorphosed iron-manganese deposits from the island of Thassos (Western Rhodope region, northern Greece). Ofioliti 1993, 18, 181–186. [Google Scholar]
- Melfos, V.; Voudouris, P. Fluid evolution in Tertiary magmatic-hydrothermal ore systems at the Rhodope metallogenic province, NE Greece. A review. Geol. Croat. 2016, 69, 157–167. [Google Scholar] [CrossRef]
- Zachos, S. Geological Map of Greece, Thassos Sheet. 1982. Available online: https://www.worldcat.org/title/geological-map-of-greece-thassos-sheet-phyllo-thasos-institogto-geologikon-kai-metalletikoi-ereunon-i-geologiki-chartografioi-egiye-apo-to-s-zachos/oclc/492645828 (accessed on 24 April 2019).
- Su, S.; Graham, I.; Voudouris, P.; Mavrogonatos, K.; Farmaki, M.V.; Panagiotidis, P. Viridine, Piemontite and Epidote Group Minerals from Thassos Island, Northern Greece; AGI: Alexandria, VA, USA, 2016; T37.P2; p. 1715. [Google Scholar]
- Voudouris, P. Minerals of Eastern Macedonia and Western Thrace: Geological framework and environment of formation. Bull. Geol. Soc. Greece 2005, 37, 62–77. [Google Scholar]
- Voudouris, P.; Melfos, V.; Katerinopoulos, A. Precious stones in Greece: Mineralogy and geological environment of formation. In Proceedings of the Understanding the Genesis of Ore Deposits to Meet the Demand of the 21st Century, Moscow, Russia, 21–24 August 2006; p. 6. [Google Scholar]
- Le Pichon, X.; Bergerat, F.; Roulet, M.J. Plate kinematics and tectonics leading to the Alpine belt formation: A new analysis. In Processes in Continental Lithospheric Deformation; Clark, S.P., Burchfiel, B.C., Suppe, J., Eds.; Geological Society of America: Boulder, CO, USA, 1988; Volume 218, pp. 111–131. [Google Scholar]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Bonneau, M. La Tectonique de L’arc égéen Externe et du Domaine Cycladique. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1991; p. 443. [Google Scholar]
- van Hinsbergen, D.J.J.; Hafkenscheid, E.; Spakman, W.; Meulenkamp, J.E.; Wortel, R. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 2005, 33, 325–328. [Google Scholar] [CrossRef]
- Wawrzenitz, N.; Krohe, A. Exhumation and doming of the Thasos metamorphic core complex (S Rhodope, Greece): Structural and geochronological constraints. Tectonophysics 1998, 285, 301–332. [Google Scholar] [CrossRef]
- Liati, A.; Seidel, E. Metamorphic evolution and geochemistry of kyanite eclogites in central Rhodope, northern Greece. Contrib. Mineral. Petrol. 1996, 123, 293–307. [Google Scholar] [CrossRef]
- Liati, A.; Gebauer, D. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib. Mineral. Petrol. 1999, 135, 340–354. [Google Scholar] [CrossRef]
- Liati, A. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: The Rhodope zone of Northern Greece. Contrib. Mineral. Petrol. 2005, 150, 608–630. [Google Scholar] [CrossRef]
- Brun, J.-P.; Sokoutis, D. Kinematics of the Southern Rhodope Core Complex (North Greece). Int. J. Earth Sci. 2007, 96, 1079–1099. [Google Scholar] [CrossRef]
- Moulas, E.; Kostopoulos, D.; Connolly, J.A.D.; Burg, J.-P. P-T estimates and timing of the sapphirine-bearing metamorphic overprint in kyanite eclogites from Central Rhodope, northern Greece. Petrology 2013, 21, 507–521. [Google Scholar] [CrossRef]
- Dürr, S.; Altherr, R.; Keller, J.; Okrusch, M.; Seidel, E. The Median Aegean Crystal-line Belt: Stratigraphy, Structure, Metamorphism, Magmatism. IUCG Sci. Rep. 1978, 38, 455–477. [Google Scholar]
- Jacobshagen, V.; Dürr, S.; Kockel, F.; Kopp, K.O.; Kowalczyk, G.; Berckhemer, H. Structure and Geodynamic Evolution of the Aegean Region. In Alps, Apennines, Hellenides; Cloos, H., Roeder, D., Schmidt, K., Eds.; IUCG: Stuttgart, Germany, 1978; pp. 537–564. [Google Scholar]
- Lister, G.S.; Banga, G.; Feenstra, A. Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 1984, 12, 221–225. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Liati, A.; Fanning, C.M. Eclogites and Country rock orthogneisses representing upper Permian Gabbros in Hercynian Granitoids, Rhodope, Greece: Geochronological Constraints. Mitt. Österr. Mineral. Ges. 2005, 150, 88. [Google Scholar]
- Schulz, B. Syntectonic heating and loading-deduced from microstructures and mineral chemistry in micaschists and amphibolites of the Pangeon complex (Thassos island, Northern Greece). Neues Jahrb. Für Geol. Paläontol. Abh. 1992, 184, 181–201. [Google Scholar]
- Bestmann, M.; Kunze, K.; Matthews, A. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: Microstructural and textural fabrics and their kinematic significance. J. Struct. Geol. 2000, 22, 1789–1807. [Google Scholar] [CrossRef]
- Dinter, D.A. Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece: Origin of the north Aegean basin. Gsa Bull. 1998, 110, 1208–1230. [Google Scholar] [CrossRef]
- Kounov, A.; Wüthrich, E.; Seward, D.; Burg, J.-P.; Stockli, D. Low-temperature constraints on the Cenozoic thermal evolution of the Southern Rhodope Core Complex (Northern Greece). Int. J. Earth Sci. 2015, 104, 1337–1352. [Google Scholar] [CrossRef]
- Peterek, A.; Polte, M.; Wölfl, C.; Bestmann, M.; Lemtis, O. Zur jungtertiären geologischen Entwicklung im SW der Insel Thassos (S-Rhodope, Nordgriechenland). Erlanger Geol. Abh. 1994, 124, 29–59. [Google Scholar]
- Dinter, D.A.; Royden, L. Late Cenozoic extension in northeastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex. Geology 1993, 21, 45–48. [Google Scholar] [CrossRef]
- Sokoutis, D.; Brun, J.P.; Driessche, J.V.D.; Pavlides, S. A major Oligo-Miocene detachment in southern Rhodope controlling north Aegean extension. J. Geol. Soc. 1993, 150, 243–246. [Google Scholar] [CrossRef]
- Kilias, A.A.; Mountrakis, D.M. Tertiary extension of the Rhodope massif associated with granite emplacement (Northern Greece). Acta Vulcanol. 1998, 10, 331–337. [Google Scholar]
- Carignan, J.; Hild, P.; Mevelle, G.; Morel, J.; Yeghicheyan, D. Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH. Geostand. Newsl. 2001, 25, 187–198. [Google Scholar] [CrossRef]
- Pouchou, J.-L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP.” In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Springer US: Boston, MA, USA, 1991; pp. 31–75. ISBN 978-1-4899-2617-3. [Google Scholar]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanalytical Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Newton, R.C.; Charlu, T.V.; Kleppa, O.J. Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta 1980, 44, 933–941. [Google Scholar] [CrossRef]
- Bocchio, R.; Diella, V.; Adamo, I.; Marinoni, N. Mineralogical characterization of the gem-variety pink clinozoisite from Val Malenco, Central Alps, Italy. Rend. Lincei 2017, 28, 549–557. [Google Scholar] [CrossRef]
- Geller, S. Crystal chemistry of garnets. Z. Krist. 1967, 125, 1–45. [Google Scholar] [CrossRef]
- Armbruster, T.; Bonazzi, P.; Akasaka, M.; Bermanec, V.; Chopin, C.; Gieré, R.; Heuss-Assbichler, S.; Liebscher, A.; Menchetti, S.; Pan, Y.; et al. Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 2006, 18, 551–567. [Google Scholar] [CrossRef]
- Franz, G.; Liebscher, A. Physical and Chemical Properties of the Epidote Minerals: An introduction. Rev. Mineral. Geochem. 2004, 56, 1–81. [Google Scholar] [CrossRef]
- Schreyer, W.; Bernhardt, H.-J.; Fransolet, A.-M.; Armbruster, T. End-member ferrian kanonaite: An andalusite phase with one Al fully replaced by (Mn, Fe)3+ in a quartz vein from the Ardennes mountains, Belgium, and its origin. Contrib. Mineral. Petrol. 2004, 147, 276–287. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Furukawa, Y.; Yoshiasa, A.; Arima, H.; Okube, M.; Murai, K.; Nishiyama, T. Local Structure of Transition Elements (V, Cr, Mn, Fe and Zn) in Al2SiO5 Polymorphs. Aip Conf. Proc. 2007, 882, 235–237. [Google Scholar]
- Rossman, G.R. Optical spectroscopy. In Spectroscopic Methods in Mineralogy and Geology; Hawthorne, F.C., Ed.; De Gruyter: Vienna, Austria, 1988; Volume 18, pp. 205–254. [Google Scholar]
- Platonov, A.N.; Tarashchan, A.N.; Langer, K.; Andrut, M.; Partzsch, G.; Matsyuk, S.S. Electronic absorption and luminescence spectroscopic studies of kyanite single crystals: Differentiation between excitation of FeTi charge transfer and Cr3+ dd transitions. Phys. Chem. Miner. 1998, 25, 203–212. [Google Scholar] [CrossRef]
- White, E.W.; White, W.B. Electron Microprobe and Optical Absorption Study of Colored Kyanites. Science 1967, 158, 915–917. [Google Scholar] [CrossRef] [PubMed]
- Rost, F.; Simon, E. Zur Geochemie und Färbung des Cyanits. Neues Jahrb. Mineral.-Mon. 1972, 9, 383–395. [Google Scholar]
- Parkin, K.M.; Loeffler, B.M.; Burns, R.G. Mössbauer spectra of kyanite, aquamarine, and cordierite showing intervalence charge transfer. Phys. Chem. Miner. 1977, 1, 301–311. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Galli, A.; Spinolo, G.; Palanza, V. EDXRF quantitative analysis of chromophore chemical elements in corundum samples. Anal. Bioanal. Chem. 2009, 395, 2021–2027. [Google Scholar] [CrossRef]
- Novák, M.; Škoda, R. Mn3+-rich andalusite to kanonaite and their breakdown products from metamanganolite at Kojetice near Třebíč, the Moldanubian Zone, Czech Republic. J. Geosci. 2007, 52, 161–167. [Google Scholar] [CrossRef]
- Abs-Wurmbach, I.; Langer, K.; Schreyer, W. The Influence of Mn3+ on the Stability Relations of the Al2Si05 Polymorphs with Special Emphasis on Manganian Andalusites (Viridines), (Al1-xMnx3+)2(O/SiO4): An Experimental Investigation. J. Petrol. 1983, 24, 48–75. [Google Scholar] [CrossRef]
- Bonazzi, P.; Menchetti, S. Manganese in Monoclinic Members of the Epidote Group: Piemontite and Related Minerals | Reviews in Mineralogy and Geochemistry. Rev. Min. Geochem. 2004, 56, 495–551. [Google Scholar] [CrossRef]
- Kassoli-Fournaraki, A.; Michailidis, K. Chemical composition of tourmaline in quartz veins from Nea Roda and Thasos areas in Macedonia, northern Greece. Can. Mineral. 1994, 32, 607–615. [Google Scholar]
- van Hinsberg, V.J.; Henry, D.J.; Dutrow, B.L. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements 2011, 7, 327–332. [Google Scholar] [CrossRef]
- Symmes, G.H.; Ferry, J.M. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. J. Metamorph. Geol. 1992, 10, 221–237. [Google Scholar] [CrossRef]
- Geiger, C.A.; Armbruster, T. Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: Structural dynamic and thermodynamic properties. Am. Mineral. 1997, 82, 740–747. [Google Scholar] [CrossRef]
- Kerrick, D.M. The Al2SiO5 Polymorphs; Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1990; ISBN 978-0-939950-27-0. [Google Scholar]
- Larson, T.E.; Sharp, Z.D. Stable isotope constraints on the Al2SiO5 ‘triple-point’ rocks from the Proterozoic Priest pluton contact aureole, New Mexico, USA. J. Metamorph. Geol. 2003, 21, 785–798. [Google Scholar] [CrossRef]
- Sepahi, A.A.; Whitney, D.L.; Baharifar, A.A. Petrogenesis of andalusite–kyanite–sillimanite veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. J. Metamorph. Geol. 2004, 22, 119–134. [Google Scholar] [CrossRef]
- Abraham, K.; Schreyer, W. Minerals of the viridine hornfels from Darmstadt, Germany. Contrib. Mineral. Petrol. 1975, 49, 1–20. [Google Scholar] [CrossRef]
- Kramm, U. Kanonaite-rich viridines from the Venn-Stavelot Massif, Belgian Ardennes. Contrib. Mineral. Petrol. 1979, 69, 387–395. [Google Scholar] [CrossRef]
- Grambling, J.A.; Williams, M.L. The Effects of Fe3+ and Mn3+ on Aluminum Silicate Phase Relations in North-Central New Mexico, U.S.A. J. Petrol. 1985, 26, 324–354. [Google Scholar] [CrossRef]
- Mposkos, E.; Krohe, A. Petrological and structural evolution of continental high pressure (HP) metamorphic rocks in the Alpine Rhodope Domain (N. Greece). In Proceedings, Third International Conference on the Geology of the Eastern Mediterranean; Panayides, I., Xenophontos, C., Malpas, J., Eds.; Geological Survey Department: Nicosia, Cyprus, 2000; pp. 221–232. [Google Scholar]
- White, R.W.; Powell, R.; Johnson, T.E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese-bearing minerals. J. Metamorph. Geol. 2014, 32, 809–828. [Google Scholar] [CrossRef]
- El Mahi, B.; Zahraoui, M.; Hoepffner, C.; Boushaba, A.; Meunier, A.; Beaufort, D. Kyanite-quartz synmetamorphic veins: Indicators of post-orogenic thinning and metamorphism (Western Meseta, Morocco). Pangea 2000, 33/34, 27–47. [Google Scholar]
- Simonet, C.; Fritsch, E.; Lasnier, B. A classification of gem corundum deposits aimed towards gem exploration. Ore Geol. Rev. 2008, 34, 127–133. [Google Scholar] [CrossRef]
- Groat, L.A.; Laurs, B.M. Gem Formation, Production, and Exploration: Why Gem Deposits Are Rare and What is Being Done to Find Them. Elements 2009, 5, 153–158. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Szilas, K. Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geosci. Front. 2018, 9, 727–749. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry. Contrib. Mineral. Petrol. 2014, 167, 968. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantola, A.; Voudouris, P.; Eglinger, A.; Scheffer, C.; Trebus, K.; Bitte, M.; Rondeau, B.; Mavrogonatos, C.; Graham, I.; Etienne, M.; et al. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals 2019, 9, 252. https://doi.org/10.3390/min9040252
Tarantola A, Voudouris P, Eglinger A, Scheffer C, Trebus K, Bitte M, Rondeau B, Mavrogonatos C, Graham I, Etienne M, et al. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals. 2019; 9(4):252. https://doi.org/10.3390/min9040252
Chicago/Turabian StyleTarantola, Alexandre, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, and et al. 2019. "Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece)" Minerals 9, no. 4: 252. https://doi.org/10.3390/min9040252
APA StyleTarantola, A., Voudouris, P., Eglinger, A., Scheffer, C., Trebus, K., Bitte, M., Rondeau, B., Mavrogonatos, C., Graham, I., Etienne, M., & Peiffert, C. (2019). Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, 9(4), 252. https://doi.org/10.3390/min9040252