Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization
Abstract
:1. Introduction
2. Tectonic Settings
2.1. Regional Geology
2.2. Geology and Sampling of the Tiantangshan Tin Polymetallic Deposit
3. Analytical Methods
3.1. SHRIMP Zircon U–Pb Dating
3.2. Major, Trace Elements and Nd Isotope of Intrusive-Volcanic Rocks
4. Results
4.1. SHRIMP Zircon U–Pb Geochronology
4.2. Major, Trace Elements of Whole Rocks
4.3. Nd Isotopes of Whole Rocks
5. Discussion
5.1. Duration of the Magmatism and Hydrothermal Activities
5.2. Genetic Type, Origin and Tectonic Background of the Tiantangshan A-Type Granite
5.3. A-Type Granite and Tin Mineralization
6. Conclusions
- The SHRIMP zircon U–Pb dating of the alkali-feldspar granite and the trachydacite in the Tiantangshan tin polymetallic deposit yields 206Pb/238U ages of 138.4 ± 1.2 and 136.2 ± 1.2 Ma, respectively. The Tiantangshan tin polymetallic deposit experienced a prolonged magmatic-hydrothermal process over a period of ~3 million years from the emplacement of granitic rocks to the origination of the hydrothermal biotite.
- Both the Tiantangshan alkali-feldspar granite and trachydacite can be classified as A1-type granite based on geochemical evidence. These granitic rocks were derived from the AFC of the coeval OIB-like basaltic magma in an extensional setting, which was most likely caused by the rollback of the Paleo-pacific plate.
- The tin polymetallic mineralization is associated with the Tiantangshan A1 type alkali-feldspar granite.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehmann, B. Metallogeny of tin; magmatic differentiation versus geochemical heritage. Econ. Geol. 1982, 77, 50–59. [Google Scholar] [CrossRef]
- Groves, D.I.; McCarthy, T.S. Fractional crystallization and the origin of tin deposits in granitoids. Miner. Depos. 1978, 13, 11–26. [Google Scholar] [CrossRef]
- Lehmann, B. Tin granites, geochemical heritage, magmatic differentiation. Geol. Rundsch 1987, 76, 177–185. [Google Scholar] [CrossRef]
- Boissavy-Vinau, M.; Roger, G. The TiO2/Ta ratio as an indicator of the degree of differentiation of tin granites. Miner. Depos. 1980, 15, 231–236. [Google Scholar] [CrossRef]
- Liverton, T.; Botelho, N.F. Fractionated alkaline rare-metal granites: Two examples. J. Asian Earth Sci. 2001, 19, 399–412. [Google Scholar] [CrossRef]
- Haapala, I.; Lukkari, S. Petrological and geochemical evolution of the Kymi stock, a topaze granite cupola within the Wiborg rapakivi batholith, Finland. Lithos 2005, 80, 247–362. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.C.; Zhu, J.C.; Lu, J.J.; Ma, D.S. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range: South China. Sci. China Earth Sci. 2013, 56, 2045–2055. [Google Scholar] [CrossRef]
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstr. Programs 1979, 11, 468. [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.J.; Chen, W.F.; Wang, R.C.; Ma, D.S.; Zhu, J.C.; Zhang, W.L.; Ji, J.F. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geol. J. China Univ. 2008, 14, 459–473, (in Chinese with English abstract). [Google Scholar]
- Zhou, Y.; Liang, X.Q.; Liang, X.R.; Wu, S.C.; Jiang, Y.; Wen, S.N.; Cai, Y.F. Geochronology and geochemical characteristics of the Xitian tungsen–tin- bearing A-type granite, Hunan Province, China. Geotecton. Metallog. 2013, 37, 517–535, (in Chinese with English abstract). [Google Scholar]
- Zheng, W.; Mao, J.W.; Zhao, H.J.; Zhao, C.S.; Yu, X.F. Two Late Cretaceous A-type granites related to the Yingwuling W–Sn polymetallic mineralization in Guangdong province, South China: Implications for petrogenesis, geodynamic setting, and mineralization. Lithos 2017, 274, 106–122. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Wang, G.C.; Liu, Z.; Ni, C.Y.; Qing, L.; Zhang, Q. Repeated slab-advance retreat of the Palaeo-Pacific plate underneath SE China. Int. Geol. Rev. 2015, 57, 472–491. [Google Scholar] [CrossRef]
- Jia, H.X.; Pang, Z.S.; Chen, R.Y.; Xue, J.L.; Chen, H.; Lin, L.J. Genesis and hydrothermal evolution of the Tiantangshan tin-polymetallic deposit, south-eastern Nanling Range, South China. Geol. J. 2018, 1–22. [Google Scholar] [CrossRef]
- Carter, A.; Roques, D.; Bristow, C.; Kinny, P. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 2001, 29, 211–214. [Google Scholar] [CrossRef]
- Lepvrier, C.; Maluski, H.; Tich, V.; Leyreloup, A.; Truong Thi, P.; Van Vuong, N. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 2004, 393, 87–118. [Google Scholar] [CrossRef]
- Ernst, W.G.; Tsujimori, T.; Zhang, R.; Liou, J.G. Permo-Triassic collision, subduction zone metamorphism, and tectonic exhumation along the East Asian continental margin. Ann. Rev. Earth Planet. Sci. 2007, 35, 73–110. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 21–26. [Google Scholar]
- Zhou, X.M.; Li, W.X. Origin of late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Yuan, S.D.; Cheng, Y.B.; Chen, Y.C. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geol. J. China Univ. 2008, 14, 510–526, (in Chinese with English abstract). [Google Scholar]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar]
- Ballard, J.R.; Palin, J.M.; Williams, I.S.; Campbell, I.H.; Faunes, A. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 2001, 29, 383–386. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.M.; Corfu, F.; Dörr, W.; Kamo, S.L.; Kennedy, A.K.; Kronz, A.; Reiners, P.W.; et al. Zircon M257-a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand Geoanal Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Ludwig, K.R. Squid 1.02: A User’s Manual; Berkeley Geochronology Centre Special Publication: Berkeley, CA, USA, 2001; pp. 1–19. [Google Scholar]
- Gao, J.F.; Lu, J.J.; Lai, M.Y.; Lin, Y.P.; Pu, W. Analysis of trace elements in rock samples using HR-ICPMS (Natural Sciences). J. Nanjing Univ. 2003, 39, 844–850. [Google Scholar]
- Pu, W.; Zhao, K.D.; Ling, H.F.; Jiang, S.Y. High precision Nd isotope measurement by Triton TI Mass Spectrometry. Acta Geosci. Sin. 2004, 25, 271–274, (in Chinese with English abstract). [Google Scholar]
- Pu, W.; Gao, J.F.; Zhao, K.D.; Ling, H.F.; Jiang, S.Y. Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA (Natural Sciences). J. Nanjing Univ. 2005, 41, 445–450. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. Isotopic and geochemical systematics in Tertiary–Recent basalts from southeastern Australia and implication for the sub-continental lithosphere. Geochim. Cosmochim. Acta 1985, 49, 2051–2067. [Google Scholar] [CrossRef]
- Li, X.H.; McCulloch, M.T. Geochemical characteristics of Cretaceous mafic dikes from northern Guangdong, SE China: Age, origin and tectonic significance. Mantle Dynamics and Plate Interactions in East Asia. AGU Geodyn. Ser. 1998, 27, 405–419. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Liu, P.; Mao, J.W.; Cheng, Y.B.; Yao, W.; Wang, X.Y.; Hao, D. An Early Cretaceous W-Sn deposit and its implications in southeast coastal metallogenic belt: Constraints from U–Pb, Re-Os, Ar-Ar geochronology at the Feie’shan W-Sn deposit, SE China. Ore Geol. Rev. 2017, 81, 112–122. [Google Scholar] [CrossRef]
- Liu, P.; Mao, J.W.; Santosh, M.; Xu, L.G.; Zhang, R.Q.; Jia, L.H. The Xiling Sn deposit, Eastern Guangdong Province, Southeast China: A new genetic model from 40Ar/39Ar muscovite and U–Pb cassiterite and zircon geochronology. Econ. Geol. 2018, 113, 511–530. [Google Scholar] [CrossRef]
- Li, X.F.; Yi, X.K.; Huang, C.; Wang, C.Z.; Wei, X.L.; Zhu, Y.T.; Xu, J. Zircon U–Pb, molybdenite Re-Os and muscovite Ar-Ar geochronology of the Yashan W-Mo and Xiatongling W-Mo-Be deposits: Insights for the duration and cooling history of magmatism and mineralization in the Wugongshan district, Jiangxi, South China. Ore Geol. Rev. 2018, 102, 1–17. [Google Scholar] [CrossRef]
- Feng, Z.; Kang, Z.; Yang, F.; Liao, J.; Wang, C. Geochronology of the Limu W–Sn–Nb–Ta-Bearing Granite Pluton in South China. Resour. Geol. 2013, 63, 320–329. [Google Scholar] [CrossRef]
- Guo, C.; Mao, J.; Bierlein, F.; Chen, Z.; Chen, Y.; Li, C.; Zeng, Z. SHRIMP U–Pb (zircon), Ar–Ar (muscovite) and Re–Os (molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block. Ore Geol. Rev. 2011, 43, 26–39. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Zhou, X.R.; Rui, X.J.; Yang, W.Z. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, northwestern Xinjiang, China: Implications for granitoid geneses. Lithos 2002, 63, 165–187. [Google Scholar] [CrossRef]
- Creaser, R.A.; Price, R.C.; Wormald, R.J. A-type granites revisited: Assessment of a residual source model. Geology 1991, 19, 163–166. [Google Scholar] [CrossRef]
- Turner, S.P.; Foden, J.D.; Morrison, R.S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos 1992, 28, 151–179. [Google Scholar] [CrossRef]
- Lapierre, H.; Jahn, B.M.; Charvet, J. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China. Tectonophys 1997, 274, 321–338. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Dai, B.Z.; Liao, S.Y.; Zhao, K.D.; Ling, H.F. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Wilson, G.A. Cassiterite solubility and Metal Choride Speciation in Supercritical Solutions. Ph.D. Thesis, John Hopkins University, Baltimore, MD, USA, 1986. [Google Scholar]
Spot | U (ppm) | Th (ppm) | Th/U | 206Pb* (ppm) | 207Pb/206Pb | ±% | 207Pb*/235U | ±% | 206Pb*/238U | ±% | 206Pb/238U | ±1σ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Age/Ma) | ||||||||||||
Sample TTS-50 (alkali-feldspar granite) | ||||||||||||
1.1 | 1179 | 513 | 0.45 | 22.1 | 0.0489 | 4.8 | 0.1453 | 5 | 0.02155 | 1.3 | 137.4 | 1.7 |
2.1 | 1859 | 976 | 0.54 | 35.5 | 0.0497 | 5.5 | 0.1487 | 5.6 | 0.02168 | 1.3 | 138.3 | 1.7 |
3.1 | 1034 | 399 | 0.4 | 19.6 | 0.0481 | 4.9 | 0.1442 | 5.1 | 0.02173 | 1.3 | 138.6 | 1.8 |
6.1 | 1241 | 1099 | 0.91 | 23.4 | 0.0488 | 3 | 0.1473 | 3.2 | 0.02188 | 1.3 | 139.5 | 1.7 |
7.1 | 1005 | 460 | 0.47 | 19.1 | 0.0496 | 3.4 | 0.151 | 3.7 | 0.02208 | 1.3 | 140.8 | 1.8 |
9.1 | 983 | 933 | 0.98 | 18.2 | 0.0492 | 3.5 | 0.1457 | 3.7 | 0.02145 | 1.3 | 136.8 | 1.7 |
12.1 | 1058 | 584 | 0.57 | 20.4 | 0.0485 | 8.4 | 0.146 | 8.5 | 0.0218 | 1.3 | 139 | 1.8 |
13.1 | 789 | 410 | 0.54 | 14.5 | 0.0482 | 3.4 | 0.1423 | 3.7 | 0.02139 | 1.3 | 136.4 | 1.8 |
15.1 | 1143 | 767 | 0.69 | 21.8 | 0.048 | 4.8 | 0.1443 | 4.9 | 0.02182 | 1.3 | 139.2 | 1.8 |
Sample TTS-89 (trachydacite) | ||||||||||||
1.1 | 357 | 254 | 0.74 | 6.53 | 0.0489 | 6.5 | 0.1434 | 6.7 | 0.02125 | 1.4 | 135.5 | 1.9 |
2.1 | 401 | 312 | 0.8 | 7.48 | 0.0487 | 5 | 0.1453 | 5.2 | 0.02164 | 1.4 | 138 | 1.9 |
4.1 | 328 | 225 | 0.71 | 6.07 | 0.0502 | 7.8 | 0.148 | 7.9 | 0.02136 | 1.5 | 136.3 | 2.0 |
5.1 | 260 | 167 | 0.66 | 4.82 | 0.0478 | 6 | 0.1416 | 6.1 | 0.02147 | 1.5 | 136.9 | 2.0 |
6.1 | 361 | 228 | 0.65 | 6.58 | 0.0521 | 7 | 0.15 | 7.1 | 0.02091 | 1.5 | 133.4 | 1.9 |
7.1 | 248 | 208 | 0.87 | 4.62 | 0.0493 | 11 | 0.146 | 11 | 0.0214 | 1.6 | 136.5 | 2.1 |
8.1 | 226 | 176 | 0.8 | 4.16 | 0.0478 | 10 | 0.14 | 10 | 0.02123 | 1.6 | 135.4 | 2.1 |
9.1 | 224 | 167 | 0.77 | 4.14 | 0.0503 | 13 | 0.148 | 13 | 0.02132 | 1.7 | 136 | 2.3 |
10.1 | 487 | 311 | 0.66 | 8.98 | 0.0473 | 7.8 | 0.139 | 7.9 | 0.02125 | 1.4 | 135.5 | 1.9 |
11.1 | 147 | 117 | 0.82 | 2.7 | 0.0477 | 6.9 | 0.1401 | 7 | 0.02133 | 1.6 | 136 | 2.2 |
12.1 | 305 | 266 | 0.9 | 5.72 | 0.0477 | 4.4 | 0.1427 | 4.6 | 0.0217 | 1.4 | 138.4 | 1.9 |
Sample | TTS-44 | TTS-45 | TTS-47 | TTS-48 | TTS-49 | TTS-50 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Alkali-feldspar Granite | |||||||||||
wt % | ± wt % | wt.% | ± wt % | wt % | ± wt % | wt % | ± wt % | wt % | ± wt % | wt % | ± wt % | |
SiO2 | 75.2 | 0.8 | 73.0 | 0.7 | 73.7 | 0.7 | 75.4 | 0.8 | 74.8 | 0.7 | 75.2 | 0.8 |
TiO2 | 0.10 | 0.01 | 0.11 | 0.01 | 0.10 | 0.01 | 0.11 | 0.01 | 0.10 | 0.01 | 0.11 | 0.01 |
Al2O3 | 12.7 | 0.1 | 13.7 | 0.1 | 13.2 | 0.1 | 12.8 | 0.1 | 12.8 | 0.1 | 12.9 | 0.1 |
FeO | 1.11 | 0.11 | 2.2 | 0.2 | 1.65 | 0.17 | 1.65 | 0.17 | 1.31 | 0.13 | 1.37 | 0.14 |
Fe2O3 | 1.58 | 0.16 | 2.36 | 0.24 | 1.99 | 0.20 | 1.72 | 0.17 | 1.53 | 0.15 | 1.58 | 0.16 |
FeOT | 2.54 | 0.25 | 4.32 | 0.43 | 3.45 | 0.35 | 3.20 | 0.32 | 2.69 | 0.27 | 2.79 | 0.28 |
MnO | 0.04 | 0.004 | 0.10 | 0.01 | 0.11 | 0.01 | 0.06 | 0.01 | 0.05 | 0.005 | 0.04 | 0.004 |
MgO | 0.15 | 0.02 | 0.19 | 0.02 | 0.08 | 0.01 | 0.06 | 0.01 | 0.08 | 0.01 | 0.05 | 0.01 |
CaO | 0.65 | 0.07 | 0.99 | 0.10 | 0.89 | 0.09 | 0.48 | 0.05 | 0.58 | 0.06 | 0.62 | 0.06 |
Na2O | 3.31 | 0.33 | 2.80 | 0.28 | 3.26 | 0.33 | 4.10 | 0.41 | 4.80 | 0.48 | 4.52 | 0.45 |
K2O | 5.13 | 0.51 | 5.49 | 0.55 | 5.55 | 0.56 | 4.58 | 0.46 | 4.59 | 0.46 | 4.23 | 0.42 |
P2O5 | 0.02 | 0 | 0.02 | 0 | 0.01 | 0 | 0.02 | 0 | 0.02 | 0 | 0.02 | 0 |
LOI | 0.93 | 1.12 | 0.90 | 0.56 | 0.67 | 0.54 | ||||||
ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | |
Rb | 754 | 38 | 851 | 43 | 749 | 37 | 670 | 34 | 806 | 40 | 616 | 31 |
Ba | 68.1 | 3.4 | 61.2 | 3.1 | 75.6 | 3.8 | 50.1 | 2.5 | 63.9 | 3.2 | 54.3 | 2.7 |
Th | 59.0 | 3.0 | 65.5 | 3.3 | 64.8 | 3.2 | 64.2 | 3.2 | 74.5 | 3.7 | 64.3 | 3.2 |
U | 18.9 | 0.9 | 16.9 | 0.8 | 19.9 | 1.0 | 12.0 | 0.6 | 18.9 | 0.9 | 18.7 | 0.9 |
Nb | 117 | 6 | 143 | 7 | 122 | 6 | 136 | 7 | 132 | 7 | 123 | 6 |
Ta | 20.3 | 1.0 | 23.9 | 1.2 | 18.1 | 0.9 | 18.8 | 0.9 | 16.9 | 0.8 | 17.3 | 0.9 |
Zr | 177 | 9 | 204 | 10 | 203 | 10 | 212 | 11 | 169 | 8 | 199 | 10 |
Hf | 10.6 | 0.5 | 12.3 | 0.6 | 12.5 | 0.6 | 12.8 | 0.6 | 12.3 | 0.6 | 11.3 | 0.6 |
Sr | 16.5 | 0.8 | 26.8 | 1.3 | 20.5 | 1.0 | 16.1 | 0.8 | 20.1 | 1.0 | 21.2 | 1.1 |
Y | 73.0 | 3.7 | 77.6 | 3.9 | 78.1 | 3.9 | 74.4 | 3.7 | 77.6 | 3.9 | 84.0 | 4.2 |
Pb | 26.1 | 1.3 | 14.2 | 0.7 | 51.5 | 2.6 | 22.4 | 1.1 | 39.3 | 2.0 | 26.7 | 1.3 |
La | 55.7 | 2.8 | 56.9 | 2.8 | 59.7 | 3.0 | 60.1 | 3.0 | 55.1 | 2.8 | 59.4 | 3.0 |
Ce | 109 | 5 | 111 | 6 | 116 | 6 | 113 | 6 | 109 | 5 | 113 | 6 |
Pr | 12.9 | 0.6 | 13.0 | 0.7 | 13.4 | 0.7 | 13.3 | 0.7 | 12.9 | 0.6 | 13.7 | 0.7 |
Nd | 44.8 | 2.2 | 40.3 | 2.0 | 45.1 | 2.3 | 46.7 | 2.3 | 45.0 | 2.3 | 49.1 | 2.5 |
Sm | 8.99 | 0.45 | 8.27 | 0.4 | 9.18 | 0.46 | 9.55 | 0.48 | 8.87 | 0.44 | 10.2 | 0.5 |
Eu | 0.20 | 0.01 | 0.22 | 0.01 | 0.23 | 0.01 | 0.18 | 0.01 | 0.26 | 0.01 | 0.21 | 0.01 |
Gd | 8.20 | 0.41 | 8.27 | 0.41 | 8.59 | 0.43 | 8.59 | 0.43 | 8.35 | 0.42 | 9.07 | 0.45 |
Tb | 1.86 | 0.09 | 1.84 | 0.09 | 1.95 | 0.10 | 1.95 | 0.10 | 1.99 | 0.10 | 2.10 | 0.11 |
Dy | 11.8 | 0.6 | 11.9 | 0.6 | 11.7 | 0.6 | 11.4 | 0.6 | 12.7 | 0.6 | 13.1 | 0.7 |
Ho | 2.50 | 0.13 | 2.65 | 0.13 | 2.60 | 0.13 | 2.57 | 0.13 | 2.77 | 0.14 | 2.80 | 0.14 |
Er | 7.10 | 0.36 | 7.73 | 0.39 | 7.68 | 0.38 | 7.25 | 0.36 | 8.37 | 0.42 | 8.17 | 0.41 |
Tm | 1.41 | 0.07 | 1.55 | 0.08 | 1.54 | 0.08 | 1.48 | 0.07 | 1.77 | 0.09 | 1.54 | 0.08 |
Yb | 8.66 | 0.43 | 9.85 | 0.49 | 9.81 | 0.49 | 9.29 | 0.46 | 11.3 | 0.6 | 10.2 | 0.5 |
Lu | 1.13 | 0.06 | 1.31 | 0.07 | 1.32 | 0.07 | 1.27 | 0.06 | 1.50 | 0.1 | 1.37 | 0.07 |
Ga | 28.9 | 1.4 | 32.1 | 1.6 | 31.3 | 1.6 | 32.1 | 1.6 | 31.7 | 1.6 | 31.7 | 1.6 |
W | 6.22 | 0.31 | 8.71 | 0.44 | 5.76 | 0.29 | 4.83 | 0.24 | 3.00 | 0.15 | 4.41 | 0.22 |
Sn | 18.3 | 0.9 | 27.8 | 1.4 | 31.5 | 1.6 | 19.2 | 1.0 | 21.3 | 1.1 | 17.1 | 0.9 |
Cu | 2.77 | 0.14 | 2.40 | 0.12 | 2.87 | 0.14 | 2.05 | 0.10 | 2.06 | 0.10 | 1.84 | 0.09 |
Zn | 325 | 16 | 537 | 27 | 250 | 13 | 52.4 | 2.6 | 87.7 | 4.4 | 50.3 | 2.5 |
Mo | 0.81 | 0.04 | 0.97 | 0.05 | 0.63 | 0.03 | 0.44 | 0.02 | 0.43 | 0.02 | 0.54 | 0.03 |
REE | 274 | 281 | 290 | 289 | 280 | 292 | ||||||
LREE | 231 | 236 | 245 | 245 | 231 | 244 | ||||||
HREE | 42.7 | 45.1 | 45.2 | 43.8 | 48.8 | 48.4 | ||||||
LREE/HREE | 5.42 | 5.24 | 5.41 | 5.59 | 4.74 | 5.04 | ||||||
(La/Yb)N | 4.61 | 4.14 | 4.37 | 4.64 | 3.50 | 4.18 | ||||||
δEu | 0.07 | 0.07 | 0.08 | 0.06 | 0.09 | 0.07 | ||||||
147Sm/144Nd | 0.1212 | 0.1240 | 0.1230 | 0.1236 | 0.1255 | |||||||
143Nd/144Nd | 0.512352 | 0.512379 | 0.512275 | 0.512354 | 0.512374 | |||||||
±2σ | 0.000006 | 0.000006 | 0.000012 | 0.000007 | 0.000009 | |||||||
εNd(T) | −4.2 | −3.8 | −5.8 | −4.2 | −3.9 | |||||||
TDM2(Nd)(Ma) | 1277 | 1238 | 1402 | 1277 | 1249 |
Sample | TTS-51 | TTS-56 | TTS-60 | TTS-41 | TTS-89 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Alkali-feldspar Granite | Trachydacite | ||||||||
wt % | ± wt % | wt % | ± wt % | wt % | ± wt % | wt % | ± wt % | wt % | ± wt % | |
SiO2 | 75.3 | 0.8 | 69.9 | 0.7 | 64.2 | 0.6 | 70.0 | 0.7 | 68.5 | 0.7 |
TiO2 | 0.10 | 0.01 | 0.27 | 0.03 | 0.64 | 0.06 | 0.32 | 0.03 | 0.26 | 0.03 |
Al2O3 | 12.8 | 0.1 | 14.7 | 0.1 | 15.1 | 0.2 | 15.0 | 0.1 | 14.7 | 1.5 |
FeO | 1.37 | 0.14 | 1.65 | 0.17 | 2.83 | 0.28 | 1.14 | 0.11 | 1.98 | 0.20 |
Fe2O3 | 1.47 | 0.15 | 1.62 | 0.16 | 2.74 | 0.27 | 1.17 | 0.12 | 1.76 | 0.18 |
FeOT | 2.69 | 0.27 | 3.46 | 0.35 | 5.90 | 0.59 | 2.44 | 0.24 | 3.97 | 0.40 |
MnO | 0.04 | 0.004 | 0.16 | 0.02 | 0.12 | 0.01 | 0.03 | 0.003 | 0.08 | 0.01 |
MgO | 0.04 | 0.004 | 0.38 | 0.04 | 0.42 | 0.04 | 0.31 | 0.03 | 0.22 | 0.02 |
CaO | 0.63 | 0.06 | 0.45 | 0.04 | 1.55 | 0.15 | 0.65 | 0.07 | 1.31 | 0.13 |
Na2O | 4.16 | 0.42 | 3.42 | 0.34 | 5.03 | 0.50 | 3.50 | 0.35 | 2.36 | 0.24 |
K2O | 4.72 | 0.47 | 6.32 | 0.63 | 4.94 | 0.49 | 6.74 | 0.67 | 6.57 | 0.66 |
P2O5 | 0.01 | 0 | 0.04 | 0 | 0.07 | 0.01 | 0.06 | 0.01 | 0.05 | 0 |
LOI | 0.61 | 0.74 | 1.38 | 0.74 | 1.37 | |||||
ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | ppm | ± ppm | |
Rb | 709 | 35 | 757 | 38 | 1222 | 61 | 863 | 43 | 819 | 41 |
Ba | 49.8 | 2.5 | 548 | 27 | 396 | 20 | 329 | 16 | 257 | 13 |
Th | 68.3 | 3.4 | 37.2 | 1.9 | 44.1 | 2.2 | 34.4 | 1.7 | 36.5 | 1.8 |
U | 21.5 | 1.1 | 6.10 | 0.31 | 5.90 | 0.30 | 6.80 | 0.34 | 6.30 | 0.32 |
Nb | 116 | 6 | 52.1 | 2.6 | 49.3 | 2.5 | 45.3 | 2.3 | 43.4 | 2.2 |
Ta | 16.6 | 0.8 | 3.70 | 0.19 | 2.50 | 0.13 | 2.70 | 0.14 | 2.40 | 0.12 |
Zr | 163 | 8 | 248 | 12 | 224 | 11 | 184 | 9 | 155 | 8 |
Hf | 8.8 | 0.4 | 7.60 | 0.38 | 6.90 | 0.35 | 5.70 | 0.29 | 5.30 | 0.27 |
Sr | 18.6 | 0.9 | 120 | 6 | 106 | 5 | 74.9 | 3.7 | 97.2 | 4.9 |
Y | 83.8 | 4.2 | 50.4 | 2.5 | 49.0 | 2.4 | 27.4 | 1.4 | 41.1 | 2.1 |
Pb | 37.5 | 1.9 | 40.8 | 2.0 | 149 | 7 | 21.6 | 1.1 | 23.1 | 1.2 |
La | 59.8 | 3.0 | 83.2 | 4.2 | 91.4 | 4.6 | 92.3 | 4.6 | 97.5 | 4.9 |
Ce | 115 | 6 | 169 | 8 | 181 | 9 | 186 | 9 | 209 | 10 |
Pr | 13.8 | 0.7 | 17.6 | 0.9 | 19.4 | 1.0 | 19.8 | 1.0 | 22.0 | 1.10 |
Nd | 44.7 | 2.2 | 63.0 | 3.2 | 68.8 | 3.4 | 68.6 | 3.4 | 76.4 | 3.8 |
Sm | 9.41 | 0.47 | 10.1 | 0.5 | 12.1 | 0.6 | 12.0 | 0.6 | 12.4 | 0.6 |
Eu | 0.20 | 0.01 | 1.07 | 0.05 | 0.91 | 0.05 | 0.63 | 0.03 | 0.70 | 0.04 |
Gd | 8.89 | 0.44 | 8.70 | 0.44 | 9.28 | 0.46 | 8.38 | 0.42 | 9.37 | 0.47 |
Tb | 2.10 | 0.11 | 1.36 | 0.07 | 1.38 | 0.07 | 1.06 | 0.05 | 1.29 | 0.06 |
Dy | 12.5 | 0.6 | 7.99 | 0.40 | 7.85 | 0.39 | 4.85 | 0.24 | 6.84 | 0.34 |
Ho | 2.76 | 0.14 | 1.62 | 0.08 | 1.56 | 0.08 | 0.84 | 0.04 | 1.30 | 0.07 |
Er | 8.02 | 0.40 | 4.70 | 0.24 | 4.57 | 0.23 | 2.26 | 0.11 | 3.59 | 0.18 |
Tm | 1.53 | 0.08 | 0.72 | 0.04 | 0.72 | 0.04 | 0.32 | 0.02 | 0.52 | 0.03 |
Yb | 10.0 | 0.5 | 4.57 | 0.23 | 4.78 | 0.24 | 2.14 | 0.11 | 3.26 | 0.16 |
Lu | 1.30 | 0.07 | 0.71 | 0.04 | 0.72 | 0.04 | 0.34 | 0.02 | 0.50 | 0.03 |
Ga | 29.8 | 1.5 | 21.3 | 1.1 | 23.2 | 1.2 | 20.3 | 1.0 | 23.2 | 1.2 |
W | 4.20 | 0.21 | 11.4 | 0.6 | 29.7 | 1.5 | 19.4 | 1.0 | 29.7 | 1.5 |
Sn | 21.0 | 1.0 | 6.59 | 0.33 | 24.9 | 1.2 | 9.11 | 0.46 | 45.1 | 2.3 |
Cu | 2.77 | 0.14 | 3.21 | 0.16 | 35.1 | 1.8 | 4.02 | 0.20 | 199 | 10 |
Zn | 55.6 | 2.8 | 46.7 | 2.3 | 390 | 20 | 35.2 | 1.8 | 315 | 16 |
Mo | 0.26 | 0.01 | 3.59 | 0.18 | 13.0 | 0.7 | 12.2 | 0.6 | 3.03 | 0.15 |
REE | 293 | 375 | 405 | 400 | 434 | |||||
LREE | 246 | 344 | 374 | 380 | 408 | |||||
HREE | 47.1 | 30.4 | 30.9 | 20.2 | 26.7 | |||||
LREE/HREE | 5.23 | 11.3 | 12.1 | 18.8 | 15.3 | |||||
(La/Yb)N | 4.30 | 13.1 | 13.7 | 31.0 | 21.5 | |||||
δEu | 0.07 | 0.34 | 0.25 | 0.18 | 0.21 | |||||
147Sm/144Nd | 0.1272 | 0.0981 | ||||||||
143Nd/144Nd | 0.512336 | 0.512216 | ||||||||
±2σ | 0.000009 | 0.000007 | ||||||||
εNd(T) | −4.7 | −6.5 | ||||||||
TDM2(Nd)(Ma) | 1311 | 1460 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, R.-Y.; Wang, G.-C.; Geng, L.; Pang, Z.-S.; Jia, H.-X.; Zhang, Z.-H.; Chen, H.; Liu, Z. Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization. Minerals 2019, 9, 257. https://doi.org/10.3390/min9050257
Jia R-Y, Wang G-C, Geng L, Pang Z-S, Jia H-X, Zhang Z-H, Chen H, Liu Z. Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization. Minerals. 2019; 9(5):257. https://doi.org/10.3390/min9050257
Chicago/Turabian StyleJia, Ru-Ya, Guo-Chang Wang, Lin Geng, Zhen-Shan Pang, Hong-Xiang Jia, Zhi-Hui Zhang, Hui Chen, and Zheng Liu. 2019. "Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization" Minerals 9, no. 5: 257. https://doi.org/10.3390/min9050257
APA StyleJia, R. -Y., Wang, G. -C., Geng, L., Pang, Z. -S., Jia, H. -X., Zhang, Z. -H., Chen, H., & Liu, Z. (2019). Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization. Minerals, 9(5), 257. https://doi.org/10.3390/min9050257