Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Experimental Device
2.1.2. Influent Quality
2.2. Analysis Method
2.3. High Throughput Sequencing
3. Results and Discussion
3.1. Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in MBBR and Regulation of Sulfate Reduction Products
3.2. Conversion of Fe and S Elements and Analysis of Reduction Products of Fe(II)EDTA-NO
3.2.1. Conversion Analysis of Fe Elements
3.2.2. Analysis of S Element Equilibrium
3.2.3. Analysis of Reduction Products of Fe(II)EDTA-NO
3.3. Analysis of Reactor Microbial Community Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cazorla, M. Air quality over a populated Andean region: Insights from measurements of ozone, NO, and boundary layer depths. Atmos. Pollut. Res. 2016, 7, 66–74. [Google Scholar] [CrossRef]
- Hao, R.L.; Zhao, Y.; Yuan, B.; Zhou, S.H.; Yang, S. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO. J. Hazard. Mater. 2016, 318, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.S.; Huang, Q.R.; Wang, J.B.; Huang, Z.S.; Chen, Z.Y.; Li, B.R. Performance and mechanism of nitric oxide removal using a thermophilic membrane biofilm reactor. Fuel Process. Technol. 2016, 148, 217–223. [Google Scholar] [CrossRef]
- Wang, X.C.; Bi, X.Y.; Sun, P.S.; Chen, J.Q.; Zou, P.; Ma, X.M.; Zhang, J.; Wang, H.Y.; Xu, X.Y. Effects of oxygen content on the simultaneous microbial removal of SO2 and NOx in biotrickling towers. Biotechnol. Bioprocess. Eng. 2015, 20, 924–930. [Google Scholar] [CrossRef]
- Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. Flue gas desulfurization: Physicochemical and biotechnological approaches. Crit. Rev. Environ. Sci. Technol. 2005, 35, 571–622. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Zhong, Q. Formulation and optimization of biological removal of flue gas pretreatment wastewater and sulfur recycling process by Box-Behnken design. Water Sci. Technol. 2013, 67, 2706–2711. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, M.F.; Zhang, L.; Zhao, J.K.; Xia, Y.F.; Liu, N.; Li, S.J.; Zhang, S.H. Enhanced NOx removal performance and microbial community shifts in an oxygen-resistance chemical absorption-biological reduction integrated system. Chem. Eng. J. 2016, 290, 185–192. [Google Scholar] [CrossRef]
- Zhou, Z.M.; Jing, G.H.; Zhou, Q. Enhanced NOx removal from flue gas by an integrated process of chemical absorption coupled with two-stage biological reduction using immobilized microorganisms. Process Saf. Environ. Prot. 2013, 91, 325–332. [Google Scholar] [CrossRef]
- Chen, J.; Gu, S.-Y.; Zheng, J.; Chen, J.-M. Simultaneous removal of SO2 and NO in a rotating drum biofilter coupled with complexing absorption by Fe(II)EDTA. Biochem. Eng. J. 2016, 114, 90–96. [Google Scholar] [CrossRef]
- Chen, J.; Li, B.; Zheng, J.; Chen, J. Control of H2S generation in simultaneous removal of NO and SO2 by rotating drum biofilter coupled with FeII(EDTA). Environ. Technol. 2019, 40, 1576–1584. [Google Scholar] [CrossRef]
- Chen, M.X.; Zhang, Y.; Zhou, J.T.; Dong, X.Y.; Wang, X.J.; Shi, Z. Sulfate removal by Desulfovibrio sp CMX in chelate scrubbing solutions for NO removal. Bioresour. Technol. 2013, 143, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Zhou, J.T.; Zhang, Y.; Wang, X.J.; Shi, Z.; Wang, X.W. Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO2 scrubbing liquor. World J. Microbiol. Biotechnol. 2015, 31, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wan, F.; Zhou, J.T. Anaerobic reduction process characteristics and microbial community analysis for sulfate and fe(II)edta-no/fe(III) edta. Environ. Sci. 2017, 38, 4706–4714. [Google Scholar] [CrossRef]
- Manconi, I.; van der Maas, P.; Lens, P.N.L. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2− solutions. Nitric Oxide-Biology Chem. 2006, 15, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.; Morgan-Sagastume, J.M.; Gonzalez-Sanchez, A. Evaluation of a hybrid physicochemical/biological technology to remove toxic H2S from air with elemental sulfur recovery. Chemosphere 2019, 222, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.M.; Ma, Y.W.; Chen, Z.Z.; Gong, H.J. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA. Environ. Technol. 2018, 39, 3006–3012. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Taylor, M.W.; Turner, S.J. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants. Appl. Microbiol. Biotechnol. 2014, 98, 7211–7222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Chen, H.; Xia, Y.F.; Zhao, J.K.; Liu, N.; Li, W. Re-acclimation performance and microbial characteristics of a thermophilic biofilter for NOx removal from flue gas. Appl. Microbiol. Biotechnol. 2015, 99, 6879–6887. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Wang, H.Y.; Hang, Q.Y.; Deng, Y.F.; Liu, K.; Li, C.M.; Zheng, S.Z. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environ. Sci. Pollut. Res. 2015, 22, 13970–13979. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, Y.; Li, Y.M.; Chen, M.X.; Dong, X.Y.; Zhou, J.T. Reduction of Fe(II)EDTA-NO using Paracoccus denitrificans and changes of Fe(II)EDTA in the system. J. Chem. Technol. Biotechnol. 2013, 88, 311–316. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Chen, M.J.; Zhang, Z.; Bott, T.R. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloids Surf. B 2005, 43, 61–71. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Petermann, M.; Flambard, A.J.; Beaufort, S.; Terrisse, F.; Trotouin, T.; Cassan, C.J.; Albasi, C. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass. Sci. Total Environ. 2018, 643, 1464–1480. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Mackey, H.R.; Hao, T.-W.; Guo, G.; van Loosdrecht, M.C.M.; Chen, G.-H. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. Water Res. 2018, 143, 399–415. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, Y.; Dong, X.Y.; Chen, M.X.; Shi, Z.; Zhou, J.T. Fe(II)EDTA-NO reduction by sulfide in the anaerobic aqueous phase: stoichiometry and kinetics. Energy Fuels 2013, 27, 6024–6030. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, Y.; Rittmann, B.E. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization. Water Res. 2017, 119, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Xia, D.; Yi, X.Y.; Lu, Y.; Huang, W.L.; Xie, Y.Y.; Ye, H.; Dang, Z.; Tao, X.Q.; Li, L.; Lu, G.N. Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors. Ecotoxicol. Environ. Saf. 2019, 174, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Saritpongteeraka, K.; Chaiprapat, S. Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater. Bioresour. Technol. 2008, 99, 8987–8994. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.P.; Ferraz, R.M.; Sancinetti, G.P.; Rodriguez, R.P. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO42− ratio. Biodegradation 2019, 30, 47–58. [Google Scholar] [CrossRef] [PubMed]
- He, F.Q.; Deng, X.H.; Chen, M. Kinetics of FeIIIEDTA complex reduction with iron powder under aerobic conditions. RSC Adv. 2016, 6, 38416–38423. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Suchecki, T.T.; Kumazawa, H. Reactivity of nano-size zinc powder in the aqueous solution of [FeIII(edta)(H2O)]−. Environ. Technol. 2017, 38, 103–107. [Google Scholar] [CrossRef]
- Suchecki, T.T.; Mathews, B.; Augustyniak, A.W.; Kumazawa, H. Applied kinetics aspects of ferric EDTA complex reduction with metal powder. Ind. Eng. Chem. Res. 2014, 53, 14234–14240. [Google Scholar] [CrossRef]
- He, F.; Qian, Y.; Xu, J. Performance, mechanism, and kinetics of Fe(III)EDTA reduction by thiourea dioxide. Energy Fuels 2019, 33, 3331–3338. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, J.; Chen, J. Removal of nitric oxide using combined Fe(II)EDTA and coal slurry in the presence of SO2. Sep. Purif. Technol. 2017, 188, 134–139. [Google Scholar] [CrossRef]
- Van der Maas, P.; van den Brink, P.; Utomo, S.; Klapwijk, B.; Lens, P. NO removal in continuous BioDeNOx reactors: Fe(II)EDTA2− regeneration, biomass growth, and EDTA degradation. Biotechnol. Bioeng. 2006, 94, 575–584. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.T.; Chen, P.; Pu, Y.W. Shifts in microbial community structure and diversity in a novel waterfall biofilm reactor combined with MBBR under light and dark conditions. Rsc Adv. 2018, 8, 37462–37471. [Google Scholar] [CrossRef] [Green Version]
- Van der Maas, P.; van den Bosch, P.; Klapwijk, B.; Lens, P. NOx removal from flue gas by an integrated physicochernical absorption and biological denitrification process. Biotechnol. Bioeng. 2005, 90, 433–441. [Google Scholar] [CrossRef]
- Chandrashekhar, B.; Sahu, N.; Tabassum, H.; Pai, P.; Morone, A.; Pandey, R.A. Treatment of ferrous-NTA-based NO(x) scrubber solution by an up-flow anaerobic packed bed bioreactor. Appl. Microbiol. Biotechnol. 2015, 99, 5281–5293. [Google Scholar] [CrossRef]
- Johnson, D. Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals 2014, 4, 279–292. [Google Scholar] [CrossRef]
- Xu, X.J.; Chen, C.; Wang, A.J.; Yu, H.; Zhou, X.; Guo, H.L.; Yuan, Y.; Lee, D.J.; Zhou, J.; Ren, N.Q. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input. J. Hazard. Mater. 2014, 278, 250–257. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Li, L.; Chen, G.-H.; Jiang, F. A novel elemental sulfur reduction and sulfide oxidation integrated process for wastewater treatment and sulfur recycling. Chem. Eng. J. 2018, 342, 438–445. [Google Scholar] [CrossRef]
- Cordoba, P.; Staicu, L.C. Flue gas desulfurization effluents: An unexploited selenium resource. Fuel 2018, 223, 268–276. [Google Scholar] [CrossRef]
- Van der Maas, P.; van de Sandt, T.; Klapwijk, B.; Lens, P. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnol. Prog. 2003, 19, 1323–1328. [Google Scholar] [CrossRef]
- Van der Maas, P.; Manconi, I.; Klapwijk, B.; Lens, P. Nitric oxide reduction in BioDeNOx reactors: Kinetics and mechanism. Biotechnol. Bioeng. 2008, 100, 1099–1107. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zheng, J.; Chen, J. Prediction and inhibition of the N2O accumulation in the BioDeNOx process for NOx removal from flue gas. Bioprocess Biosyst. Eng 2016, 39, 1859–1865. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.-L.; Wang, J.; Zhang, S.-H.; Chen, J.-M. A mass-transfer model of nitric oxide removal in a rotating drum biofilter coupled with Fe(II)EDTA absorption. Ind. Eng. Chem. Res 2018, 57, 8144–8151. [Google Scholar] [CrossRef]
- Zhao, J.K.; Zhang, C.Y.; Sun, C.; Li, W.; Zhang, S.H.; Li, S.J.; Zhang, D.X. Electron transfer mechanism of biocathode in a bioelectrochemical system coupled with chemical absorption for NO removal. Bioresour. Technol. 2018, 254, 16–22. [Google Scholar] [CrossRef]
- Rajeev, L.; Chen, A.; Kazakov, A.E.; Luning, E.G.; Zane, G.M.; Novichkov, P.S.; Wall, J.D.; Mukhopadhyaya, A. Regulation of nitrite stress response in Desulfovibrio vulgaris hildenborough, a model sulfate-reducing bacterium. J. Bacteriol. 2015, 197, 3400–3408. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Salvado, J.C.; Monperrus, M.; Caumette, P.; Amouroux, D.; Duran, R.; Guyoneaud, R. Characterization of Desulfomicrobium salsuginis sp nov and Desulfomicrobium aestuarii sp nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst. Appl. Microbiol. 2008, 31, 30–37. [Google Scholar] [CrossRef]
- Wei, L.; Ma, F.; Zhao, G. Composition and dynamics of sulfate-reducing bacteria during the waterflooding process in the oil field application. Bioresour. Technol. 2010, 101, 2643–2650. [Google Scholar] [CrossRef]
- Baldwin, S.; Mattes, A.; Rezadehbashi, M.; Taylor, J. Seasonal microbial population shifts in a bioremediation system treating metal and sulfate-rich seepage. Minerals 2016, 6, 36. [Google Scholar] [CrossRef]
- Xu, J.L.; Fan, Y.M.; Li, Z.X. Effect of pH on elemental sulfur conversion and microbial communities by autotrophic simultaneous desulfurization and denitrification. Environ. Technol. 2016, 37, 3014–3023. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.K.; Li, Z.L.; Yuan, Y.; Chen, C.; Tan, W.B.; Gao, S.; Gao, L.F.; Zhou, J.Z.; Wang, A.J. Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor. Bioresour. Technol. 2015, 192, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Li, W.; Wu, C.Z.; Chen, H.; Shi, Y. Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp strain DN-2 in NOx scrubber solution. Appl. Microbiol. Biotechnol. 2007, 76, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Jetten, M.S.M.; Stams, A.J.M.; Zehnder, A.J.B. Methanogenesis from acetate - a comparison of the acetate metabolism in Methanothrix-soehngenii and methanosarcina spp. FEMS Microbiol. Lett. 1992, 88, 181–197. [Google Scholar] [CrossRef]
- Collins, M.D.; Shah, H.N. NOTES: Reclassification of Bacteroides praeacutus Tissier (Holdeman and Moore) in a New Genus, Tissierella, as Tissierella praeacuta comb. nov. Int. J. Syst. 1986, 36, 461–463. [Google Scholar] [CrossRef]
- Robertson, L.A.; Kuenen, J.G. The Colorless Sulfur Bacteria. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 975–1011. [Google Scholar]
- Garcia-de-Lomas, J.; Corzo, A.; Carmen Portillo, M.; Gonzalez, J.M.; Andrades, J.A.; Saiz-Jimenez, C.; Garcia-Robledo, E. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms. Water Res. 2007, 41, 3121–3131. [Google Scholar] [CrossRef]
- Garcia-de-Lomas, J.; Corzo, A.; Carmen Portillo, M. Azoarcus taiwanensis sp nov., a denitrifying species isolated from a hot spring. Appl. Microbiol. Biotechnol. 2014, 98, 1301–1307. [Google Scholar] [CrossRef]
Reaction Stage | Sulfate Concentration/mM | Fe(II)EDTA-NO Concentration/mM | HRT/h | Fe(III)EDTA Concentration/mM | Nitrate Concentration/mM | Run Time/d |
---|---|---|---|---|---|---|
Stage 1 | 10 | 0 | 48 | 0 | 2 | 32 |
Stage 2 | 10 | 0–2 | 24 | 0 | 2–0 | 24 |
Stage 3 | 15–25 | 2.5–3 | 24–20 | 0 | 0 | 61 |
Stage 4 | 25 | 3.5–8 | 20 | 0 | 0 | 70 |
Stage 5 | 25 | 8 | 20 | 4–6 | 0 | 27 |
Stage 6 | 20–15 | 8 | 16–12 | 6 | 0 | 54 |
Stage 7 | 15 | 8 | 12 | 6 | 0 | 12 |
Days/d | Influent Load of SO42−-S/kg·m−3·d−1 | Load of S2−-S/kg·m−3·d−1 | Load of H2S-S/kg·m−3·d−1 | SO42− Removal Efficiency/% |
---|---|---|---|---|
1 | 0.97 | 0.08 | 0.13 | 94.93 |
2 | 1.00 | 0.08 | 0.17 | 94.84 |
3 | 0.98 | 0.09 | 0.02 | 96.54 |
4 | 0.95 | 0.05 | 0.11 | 95.20 |
5 | 1.00 | 0.08 | 0.01 | 95.77 |
6 | 1.03 | 0.08 | 0.15 | 96.71 |
7 | 1.04 | 0.07 | 0.04 | 97.18 |
8 | 0.99 | 0.07 | 0.13 | 95.78 |
9 | 0.94 | 0.07 | 0.14 | 94.63 |
10 | 1.00 | 0.06 | 0.15 | 95.90 |
11 | 1.05 | 0.06 | 0.15 | 96.52 |
12 | 0.97 | 0.07 | 0.13 | 96.16 |
average | 0.99 | 0.07 | 0.11 | 95.85 |
Days/d | Influent Load of NO-N/kg·m−3·d−1 | Load of N2-N/kg·m−3·d−1 | NO Removal Efficiency/% |
---|---|---|---|
1 | 0.224 | 0.194 | 94.3 |
2 | 0.226 | 0.187 | 92.1 |
3 | 0.219 | 0.186 | 93.3 |
4 | 0.225 | 0.191 | 92.4 |
5 | 0.224 | 0.180 | 90.3 |
6 | 0.227 | 0.196 | 93.2 |
7 | 0.226 | 0.189 | 92.1 |
average | 0.224 | 0.189 | 92.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, L.; Zhou, J. Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products. Minerals 2019, 9, 330. https://doi.org/10.3390/min9060330
Zhang Y, Sun L, Zhou J. Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products. Minerals. 2019; 9(6):330. https://doi.org/10.3390/min9060330
Chicago/Turabian StyleZhang, Yu, Lijian Sun, and Jiti Zhou. 2019. "Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products" Minerals 9, no. 6: 330. https://doi.org/10.3390/min9060330
APA StyleZhang, Y., Sun, L., & Zhou, J. (2019). Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products. Minerals, 9(6), 330. https://doi.org/10.3390/min9060330