Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential
Abstract
:1. Introduction
2. Samples and Methods
3. Results
3.1. Morphology of Spinel
3.2. Chemical Composition of Spinel
4. Discussion
4.1. Early Crystallization Sequence
4.2. Temperature and Oxygen Fugacity
4.3. Trace Element Concentration in the Diamond Window
4.4. Diamond Potential in Kimberlite
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardman, M.F.; Pearson, D.G.; Stachel, T.; Sweeney, R.J. Statistical approaches to the discrimination of crust-and mantle-derived low-Cr garnet–Major-element-based methods and their application in diamond exploration. J. Geochem. Explor. 2018, 186, 24–35. [Google Scholar] [CrossRef]
- Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [Google Scholar] [CrossRef]
- Schulze, D.J. A classification scheme for mantle-derived garnets in kimberlite: A tool for investigating the mantle and exploring for diamonds. Lithos 2003, 71, 195–213. [Google Scholar] [CrossRef]
- Griffin, W.; Ryan, C. Trace elements in indicator minerals: Area selection and target evaluation in diamond exploration. J. Geochem. Explor. 1995, 53, 311–337. [Google Scholar] [CrossRef]
- Griffin, W.; Sobolev, N.; Ryan, C.; Pokhilenko, N.; Win, T.; Yefimova, E. Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere. Lithos 1993, 29, 235–256. [Google Scholar] [CrossRef]
- Gurney, J.J. A correlation between garnets and diamonds in kimberlites. In Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration; University of Western Australia: South Perth, Australia, 1984; Volume 8, pp. 143–166. [Google Scholar]
- Sobolev, N.V.; Lavrent’ev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-rich garnets from the kimberlites of yakutia and their parageneses. Contr. Mineral. Petrol. 1973, 40, 39–52. [Google Scholar] [CrossRef]
- Carmody, L.; Taylor, L.A.; Thaisen, K.G.; Tychkov, N.; Bodnar, R.J.; Sobolev, N.V.; Pokhilenko, L.N.; Pokhilenko, N.P. Ilmenite as a diamond indicator mineral in the Siberian craton: A tool to predict diamond potential. Econ. Geol. 2014, 109, 775–783. [Google Scholar] [CrossRef]
- Wyatt, B.A.; Baumgartner, M.; Anckar, E.; Grutter, H. Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 2004, 77, 819–840. [Google Scholar] [CrossRef]
- Schulze, D.J. Origins of chromian and aluminous spinel macrocrysts from kimberlites in southern Africa. Can. Mineral. 2001, 39, 361–376. [Google Scholar] [CrossRef]
- Gurney, J.J.; Helmstaedt, H.H.; Richardson, S.H.; Shirey, S.B. Diamonds through Time. Econ. Geol. 2010, 105, 689–712. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of Mantle carbon. In Carbon in Earth; Hazen, R.M., Jones, A.P., Baross, J.A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2013; Volume 75, pp. 355–421. [Google Scholar]
- Gurney, J.J.; Helmstaedt, H.H.; Le Roex, A.P.; Nowicki, T.E.; Richardson, S.H.; Westerlund, K.J. Diamonds: Crustal distribution and formation processes in time and space and an integrated deposit model. Econ. Geol. 2005, 100, 143–177. [Google Scholar]
- Gurney, J.J.P.; Zweistra, P. The interpretation of the major element compositions of mantle minerals in diamond exploration. J. Geochem. Explor. 1995, 53, 293–309. [Google Scholar] [CrossRef]
- Ryan, C.G.; Griffin, W.L.; Pearson, N.J. Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J. Geophys. Res. Solid Earth 1996, 101, 5611–5625. [Google Scholar] [CrossRef]
- Malkovets, V.G.; Griffin, W.L.; O’Reilly, S.Y.; Wood, B.J. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 2007, 35, 339–342. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D.; Carlson, J.A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contr. Mineral. Petrol. 2005, 150, 54–69. [Google Scholar] [CrossRef]
- Gurney, J.J.; Hildebrand, P.R.; Carlson, J.A.; Fedortchouk, Y.; Dyck, D.R. The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos 2004, 77, 21–38. [Google Scholar] [CrossRef]
- Alam, M.; Sun, Q. The kinetics of chemical vapor deposited diamond-oxygen reaction. J. Mater. Res. 1993, 8, 2870–2878. [Google Scholar] [CrossRef]
- Sonin, V.; Pokhilenko, L.; Pokhilenko, N.; Fedorov, I. Diamond oxidation rate as related to oxygen fugacity. Geol. Ore Depos. 2000, 42, 496–502. [Google Scholar]
- Kozai, Y.; Arima, M. Diamond dissolution in kimberlite and lamproite melts at deep crustal conditions. In Proceedings of the 8th International Kimberlite Conference, Victoria, BC, Canada, 22–27 June 2003. Extended Abstracts. [Google Scholar]
- Mitchell, R.H. Kimberlites; Plenum: New York, NY, USA, 1986. [Google Scholar]
- Roeder, P.L.; Schulze, D.J. Crystallization of groundmass spinel in kimberlite. J. Petrol. 2008, 49, 1473–1495. [Google Scholar] [CrossRef]
- Van Straaten, B.I.; Kopylova, M.G.; Russell, J.; Webb, K.J.; Smith, B.H.S. Discrimination of diamond resource and non-resource domains in the Victor North pyroclastic kimberlite, Canada. J. Volcanol. Geotherm. Res. 2008, 174, 128–138. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contr. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, D.Z.; Ju, Y.; Kang, N.; Wang, G.G. Petrography, chemical composition, and Raman spectra of chrome spinel: Constraints on the diamond potential of the No. 30 pipe kimberlite in Wafangdian, North China Craton. Ore Geol. Rev. 2017, 91, 896–905. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, G.G.; Fan, M.S.; Li, S.N. Metasomatic processes in the lithosphere mantle beneath the No.30 kimberlite (Wafangdian region, North China Craton). Can. Mineral. 2019, 57, 1–19. [Google Scholar] [CrossRef]
- Droop, G. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites, Orangeites, Lamproites, Melilitites, and Minettes: A Petrographic Atlas; Almaz Press: Thunder Bay, ON, Canada, 1997; p. 243. [Google Scholar]
- Mitchell, R.H. Kimberlites and orangeites. In Kimberlites, Orangeites, and Related Rocks; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
- Haggerty, S.E. The chemistry and genesis of opaque minerals in kimberlites. Phys. Chem. Earth 1975, 9, 295–307. [Google Scholar] [CrossRef]
- Irvine, T. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Bussweiler, Y.; Stone, R.S.; Pearson, D.G.; Luth, R.W.; Stachel, T.; Kjarsgaard, B.A.; Menzies, A. The evolution of calcite-bearing kimberlites by melt-rock reaction: Evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contr. Mineral. Petrol. 2016, 171, 65. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D. Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J. Petrol. 2004, 45, 1725–1745. [Google Scholar] [CrossRef]
- Kozai, Y.; Arima, M. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Miner. 2005, 90, 1759–1766. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Y.; Essene, E.J. Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit. Ore Geol. Rev. 2015, 65, 733–748. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Wall, V. The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s Upper Mantle. J. Petrol. 1987, 28, 1169–1191. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Litasov, K.D.; Shatskiy, A.; Safonov, O.G.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent. Chem. Geol. 2017, 455, 44–56. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Yaxley, G.M. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 2015, 158, 48–56. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P.; Sobolev, N.V. Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 2009, 112, 213–222. [Google Scholar] [CrossRef]
- Brett, R.C.; Russell, J.; Moss, S. Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 2009, 112, 201–212. [Google Scholar] [CrossRef]
- Barker, D.S. Calculated silica activities in carbonatite liquids. Contr. Mineral. Petrol. 2001, 141, 704–709. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 2013, 160–161, 201–215. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Litasov, K.D.; Shatskiy, A.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 2015, 28, 1391–1414. [Google Scholar] [CrossRef]
- Nixon, P.H. A review of mantle xenoliths and their role in diamond exploration. J. Geodyn. 1995, 20, 305–329. [Google Scholar] [CrossRef]
- Stachel, T.; Aulbach, S.; Brey, G.P.; Harris, J.W.; Leost, I.; Tappert, R.; Viljoen, K.S. The trace element composition of silicate inclusions in diamonds: A review. Lithos 2004, 77, 1–19. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. Formation of diamond in the Earth’s mantle. J. Phys. Condens. Matter 2009, 21, 364206. [Google Scholar] [CrossRef]
- Haggerty, S.E. A diamond trilogy: Superplumes, supercontinents, and supernovae. Science 1999, 285, 851–860. [Google Scholar] [CrossRef]
- Stachel, T.; Brey, G.P.; Harris, J.W. Inclusions in sublithospheric diamonds: Glimpses of deep Earth. Elements 2005, 1, 73–78. [Google Scholar] [CrossRef]
- Canil, D. The Ni-in-garnet geothermometer: Calibration at natural abundances. Contr. Mineral. Petrol. 1999, 136, 240–246. [Google Scholar] [CrossRef]
Oxide (wt. %) | WFD148-SP1 | WFD148-SP2 | WFD148-SP3 | WFD148-SP4 | WFD148-SP5 | WFD148-SP6 | WFD148-SP7 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Core | Rim | Core | Rim | Core | Rim | Core | Rim | Core | Rim | Core | Rim | Core | Rim | |||||||
TiO2 | 3.84 | 0.35 | 3.92 | 0.79 | 3.99 | 0.69 | 3.51 | 0.34 | 4.20 | 0.39 | 3.75 | 0.24 | 4.04 | 0.77 | ||||||
Al2O3 | 6.49 | 0.03 | 5.76 | 0.22 | 5.30 | 0.34 | 6.45 | 0.08 | 4.58 | 0.43 | 6.21 | 0.05 | 5.38 | 0.15 | ||||||
Cr2O3 | 51.86 | 1.57 | 51.67 | 0.72 | 50.11 | 0.53 | 50.04 | 0.23 | 49.75 | 0.70 | 50.13 | 0.97 | 52.22 | 0.95 | ||||||
Fe2O3 | 7.47 | 65.87 | 7.38 | 63.38 | 8.92 | 63.36 | 8.23 | 64.88 | 9.71 | 63.48 | 8.90 | 64.81 | 8.24 | 64.27 | ||||||
FeO | 21.21 | 30.72 | 21.92 | 29.34 | 23.21 | 29.14 | 23.80 | 29.39 | 23.48 | 28.46 | 22.02 | 29.68 | 21.57 | 29.72 | ||||||
MgO | 9.85 | 0.17 | 9.18 | 0.51 | 8.18 | 0.56 | 7.63 | 0.28 | 8.09 | 0.74 | 9.07 | 0.14 | 9.64 | 0.57 | ||||||
MnO | 0.58 | 0.01 | 0.56 | 0.18 | 0.81 | 0.09 | 0.80 | 0.08 | 0.75 | 0.12 | 0.63 | 0.16 | 0.69 | 0.12 | ||||||
Total | 101.30 | 98.71 | 100.38 | 95.14 | 100.53 | 94.71 | 100.46 | 95.27 | 100.56 | 94.32 | 100.69 | 96.04 | 101.77 | 96.55 | ||||||
Ti | 0.096 | 0.010 | 0.100 | 0.024 | 0.102 | 0.021 | 0.090 | 0.010 | 0.108 | 0.012 | 0.095 | 0.007 | 0.101 | 0.023 | ||||||
Al | 0.255 | 0.002 | 0.230 | 0.011 | 0.213 | 0.016 | 0.259 | 0.004 | 0.185 | 0.021 | 0.247 | 0.002 | 0.212 | 0.007 | ||||||
Cr | 1.366 | 0.048 | 1.383 | 0.023 | 1.353 | 0.017 | 1.349 | 0.007 | 1.348 | 0.022 | 1.337 | 0.031 | 1.378 | 0.030 | ||||||
Fe3+ | 0.187 | 1.930 | 0.188 | 1.919 | 0.229 | 1.925 | 0.211 | 1.969 | 0.250 | 1.933 | 0.226 | 1.953 | 0.207 | 1.917 | ||||||
Fe2+ | 0.591 | 1.000 | 0.620 | 0.987 | 0.663 | 0.984 | 0.679 | 0.991 | 0.673 | 0.963 | 0.621 | 0.994 | 0.602 | 0.985 | ||||||
Mg | 0.489 | 0.010 | 0.463 | 0.030 | 0.416 | 0.034 | 0.388 | 0.017 | 0.413 | 0.045 | 0.456 | 0.008 | 0.480 | 0.034 | ||||||
Mn | 0.016 | 0.000 | 0.016 | 0.006 | 0.024 | 0.003 | 0.023 | 0.003 | 0.022 | 0.004 | 0.018 | 0.005 | 0.019 | 0.004 | ||||||
Total | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | ||||||
Cr/(Cr + Al) | 0.84 | 0.97 | 0.86 | 0.69 | 0.86 | 0.51 | 0.84 | 0.66 | 0.88 | 0.52 | 0.84 | 0.93 | 0.87 | 0.81 | ||||||
Fe2+/(Fe2+ + Mg) | 0.55 | 0.99 | 0.57 | 0.97 | 0.61 | 0.97 | 0.64 | 0.98 | 0.62 | 0.96 | 0.58 | 0.99 | 0.56 | 0.97 | ||||||
Mg/(Mg + Fe2+) | 0.45 | 0.01 | 0.43 | 0.03 | 0.39 | 0.03 | 0.36 | 0.02 | 0.38 | 0.04 | 0.42 | 0.01 | 0.44 | 0.03 | ||||||
Fe3+/(Fe3+ + Al + Cr) | 0.10 | 0.97 | 0.10 | 0.98 | 0.13 | 0.98 | 0.12 | 0.99 | 0.14 | 0.98 | 0.12 | 0.98 | 0.12 | 0.98 | ||||||
Oxide (wt. %) | WFD165-SP8 | WFD165-SP9 | WFD165-SP10 | WFD165-SP11 | WFD165-SP12 | WFD165-SP13 | WFD165-SP14 | |||||||||||||
Core | Intermediate | Rim | Core | Intermediate | Rim | Core | Intermediate | Rim | Core | Rim | Core | Intermediate | Rim | Core | Intermediate | Rim | Core | Intermediate | Rim | |
TiO2 | 4.36 | 7.06 | 1.45 | 4.18 | 10.34 | 0.46 | 4.55 | 6.39 | 1.47 | 4.29 | 1.97 | 4.18 | 5.22 | 0.92 | 4.51 | 7.66 | 4.21 | 4.14 | 8.85 | 4.63 |
Al2O3 | 5.78 | 7.53 | 0.24 | 6.06 | 7.17 | 0.01 | 4.76 | 5.19 | 0.41 | 5.34 | 0.26 | 5.19 | 4.54 | 0.13 | 5.45 | 7.87 | 1.54 | 5.99 | 8.49 | 0.15 |
Cr2O3 | 53.18 | 32.16 | 0.41 | 52.91 | 16.36 | 0.16 | 52.50 | 40.44 | 0.98 | 49.99 | 0.18 | 53.37 | 45.98 | 2.72 | 52.65 | 27.81 | 0.34 | 52.90 | 21.04 | 0.45 |
Fe2O3 | 7.23 | 14.45 | 64.27 | 8.80 | 23.06 | 66.95 | 8.53 | 11.52 | 63.72 | 9.38 | 63.48 | 8.97 | 10.15 | 63.50 | 8.56 | 17.63 | 56.93 | 7.93 | 20.17 | 57.84 |
FeO | 17.32 | 35.80 | 31.78 | 15.75 | 39.77 | 30.89 | 19.05 | 31.52 | 31.94 | 20.71 | 32.27 | 16.56 | 29.11 | 30.29 | 16.61 | 36.19 | 34.14 | 16.42 | 38.33 | 34.20 |
MgO | 12.66 | 1.09 | 0.03 | 13.85 | 0.37 | 0.05 | 11.55 | 3.29 | 0.06 | 9.87 | 0.05 | 13.22 | 4.63 | 0.68 | 13.34 | 1.28 | 0.15 | 13.21 | 0.30 | 0.16 |
MnO | 0.40 | 1.95 | 0.06 | 0.31 | 1.31 | 0.06 | 0.54 | 2.04 | 0.02 | 1.02 | 0.01 | 0.31 | 1.49 | 0.11 | 0.29 | 1.90 | 0.01 | 0.26 | 2.04 | 0.17 |
Total | 100.92 | 100.05 | 98.24 | 101.87 | 98.38 | 98.58 | 101.48 | 100.37 | 98.59 | 100.60 | 98.22 | 101.80 | 101.12 | 98.35 | 101.40 | 100.34 | 97.32 | 100.86 | 99.22 | 97.59 |
Ti | 0.108 | 0.190 | 0.043 | 0.102 | 0.286 | 0.014 | 0.113 | 0.170 | 0.043 | 0.109 | 0.058 | 0.102 | 0.137 | 0.027 | 0.111 | 0.206 | 0.123 | 0.102 | 0.241 | 0.136 |
Al | 0.224 | 0.318 | 0.011 | 0.231 | 0.311 | 0.001 | 0.186 | 0.217 | 0.019 | 0.212 | 0.012 | 0.200 | 0.187 | 0.006 | 0.210 | 0.331 | 0.071 | 0.231 | 0.363 | 0.007 |
Cr | 1.382 | 0.911 | 0.013 | 1.352 | 0.476 | 0.005 | 1.375 | 1.135 | 0.030 | 1.332 | 0.006 | 1.375 | 1.272 | 0.084 | 1.359 | 0.785 | 0.010 | 1.370 | 0.603 | 0.014 |
Fe3+ | 0.179 | 0.390 | 1.891 | 0.214 | 0.639 | 1.967 | 0.213 | 0.307 | 1.865 | 0.238 | 1.867 | 0.220 | 0.267 | 1.857 | 0.210 | 0.473 | 1.672 | 0.195 | 0.551 | 1.707 |
Fe2+ | 0.476 | 1.073 | 1.039 | 0.426 | 1.225 | 1.009 | 0.528 | 0.935 | 1.039 | 0.584 | 1.055 | 0.451 | 0.852 | 0.984 | 0.453 | 1.080 | 1.114 | 0.450 | 1.163 | 1.121 |
Mg | 0.621 | 0.058 | 0.002 | 0.667 | 0.020 | 0.003 | 0.571 | 0.174 | 0.003 | 0.496 | 0.003 | 0.643 | 0.241 | 0.039 | 0.649 | 0.068 | 0.009 | 0.645 | 0.016 | 0.009 |
Mn | 0.011 | 0.059 | 0.002 | 0.008 | 0.041 | 0.002 | 0.015 | 0.061 | 0.001 | 0.029 | 0.000 | 0.008 | 0.044 | 0.004 | 0.008 | 0.058 | 0.000 | 0.007 | 0.063 | 0.006 |
Total | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Cr/(Cr + Al) | 0.86 | 0.74 | 0.54 | 0.85 | 0.60 | 0.90 | 0.88 | 0.84 | 0.62 | 0.86 | 0.32 | 0.87 | 0.87 | 0.93 | 0.87 | 0.70 | 0.13 | 0.86 | 0.62 | 0.67 |
Fe2+/(Fe2+ + Mg) | 0.43 | 0.95 | 1.00 | 0.39 | 0.98 | 1.00 | 0.48 | 0.84 | 1.00 | 0.54 | 1.00 | 0.41 | 0.78 | 0.96 | 0.41 | 0.94 | 0.99 | 0.41 | 0.99 | 0.99 |
Mg/(Mg + Fe2+) | 0.57 | 0.05 | 0.00 | 0.61 | 0.02 | 0.00 | 0.52 | 0.16 | 0.00 | 0.46 | 0.00 | 0.59 | 0.22 | 0.04 | 0.59 | 0.06 | 0.01 | 0.59 | 0.01 | 0.01 |
Fe3+/(Fe3+ + Al + Cr) | 0.10 | 0.24 | 0.99 | 0.12 | 0.45 | 1.00 | 0.12 | 0.19 | 0.97 | 0.13 | 0.99 | 0.12 | 0.15 | 0.95 | 0.12 | 0.30 | 0.95 | 0.11 | 0.36 | 0.99 |
ppm | L30-01 | L30-02 | L30-03 | L30-04 | L30-05 | L30-06 | L30-07 | L30-08 | L30-09 | L30-10 | L30-11 | L30-12 | L30-13 | L30-14 | L30-15 | L30-16 | L30-17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | 1047 | 452 | 662 | 453 | 571 | 657 | 910 | 850 | 803 | 482 | 698 | 677 | 609 | 358 | 375 | 363 | 359 |
Ga | 85.6 | 22.7 | 20.1 | 40.9 | 17.3 | 12.1 | 52.5 | 25.9 | 75.1 | 27.9 | 37.8 | 46.5 | 24.5 | 27.4 | 26.5 | 27.0 | 39.2 |
Zr | 0.23 | 0.83 | 6.13 | 1.44 | 0.36 | 1.12 | 1.97 | 0.17 | 0.15 | 1.80 | 0.51 | 0.16 | 0.24 | 5.35 | 5.31 | 5.44 | 3.09 |
Nb | 2.74 | 1.22 | 2.43 | 2.06 | 1.57 | 0.30 | 1.87 | 0.07 | 0.62 | 1.59 | 0.12 | 0.38 | 1.00 | 2.39 | 2.26 | 2.18 | 2.07 |
Ni | 696 | 957 | 994 | 1147 | 788 | 843 | 731 | 668 | 1327 | 977 | 1490 | 1373 | 750 | 1432 | 1437 | 1425 | 1821 |
TZn (°C) | 828 | 1177 | 995 | 1176 | 1059 | 998 | 874 | 898 | 919 | 1143 | 973 | 986 | 1031 | 1316 | 1286 | 1307 | 1316 |
ppm | L30-18 | L30-19 | L30-20 | L30-21 | L30-22 | L30-23 | L30-24 | L30-25 | L30-26 | L30-27 | L30-28 | L30-29 | L30-30 | L30-31 | L30-32 | L30-33 | L30-34 |
Zn | 551 | 610 | 751 | 764 | 723 | 648 | 595 | 729 | 611 | 588 | 478 | 416 | 479 | 655 | 806 | 411 | 320 |
Ga | 15.4 | 41.5 | 62.7 | 29.1 | 101.5 | 61.0 | 38.1 | 13.8 | 10.1 | 51.4 | 17.2 | 20.8 | 26.3 | 35.5 | 38.3 | 65.9 | 88.0 |
Zr | 4.02 | 0.11 | 0.07 | 0.20 | 1.32 | 0.28 | 1.62 | 2.36 | 9.31 | 1.41 | 0.41 | 2.74 | 2.35 | 3.25 | 2.55 | 4.82 | 10.39 |
Nb | 1.19 | 0.65 | 0.07 | 0.49 | 3.39 | 0.71 | 2.16 | 1.37 | 2.32 | 1.38 | 1.00 | 1.38 | 1.04 | 1.37 | 1.46 | 2.95 | 3.83 |
Ni | 957 | 1435 | 978 | 702 | 1494 | 832 | 927 | 778 | 858 | 1491 | 808 | 955 | 1024 | 1563 | 1361 | 2041 | 2306 |
TZn (°C) | 1077 | 1030 | 944 | 938 | 959 | 1004 | 1041 | 956 | 1029 | 1047 | 1147 | 1224 | 1146 | 1000 | 918 | 1231 | 1394 |
ppm | L30-35 | L30-36 | L30-37 | L30-38 | L30-39 | L30-40 | L30-41 | L30-42 | L30-43 | L30-44 | L30-45 | L30-46 | L30-47 | L30-48 | L30-49 | L30-50 | L30-51 |
Zn | 660 | 655 | 815 | 695 | 478 | 815 | 520 | 419 | 903 | 452 | 751 | 397 | 484 | 736 | 809 | 793 | 524 |
Ga | 6.4 | 7.4 | 53.3 | 79.0 | 29.0 | 46.0 | 29.7 | 15.1 | 49.6 | 13.1 | 18.6 | 85.5 | 17.0 | 87.8 | 23.3 | 39.3 | 29.6 |
Zr | 1.30 | 11.3 | 5.37 | 0.35 | 2.08 | 0.08 | 0.28 | 4.56 | 0.94 | 0.36 | 0.70 | 5.93 | 0.95 | 0.05 | 10.66 | 2.68 | 2.16 |
Nb | 0.35 | 3.21 | 5.05 | 3.99 | 1.80 | 0.21 | 1.36 | 2.38 | 1.64 | 0.63 | 3.25 | 3.33 | 1.15 | 0.10 | 2.13 | 7.07 | 1.82 |
Ni | 846 | 922 | 1059 | 1048 | 981 | 1317 | 931 | 1308 | 976 | 838 | 701 | 1451 | 858 | 1089 | 1064 | 1075 | 888 |
TZn (°C) | 996 | 999 | 913 | 975 | 1147 | 914 | 1105 | 1220 | 877 | 1177 | 944 | 1251 | 1141 | 952 | 916 | 924 | 1100 |
Sample | Ol-Sp T (°C) a | Ol-Sp Oxygen Fugacity b | log aSiO2 c | Corrected d | ||||
---|---|---|---|---|---|---|---|---|
Δlog fO2FMQ | log fO2 | Δlog fO2NNO | Di-Mont | En-Fo | Δlog fO2FMQ | Δlog fO2NNO | ||
WFD148-SP1 | 1249 | 1.5 | −9.8 | 1.0 | −1.40 | −0.41 | −1.5 | −2.0 |
WFD148-SP2 | 1218 | 1.5 | −10.1 | 1.1 | −1.46 | −0.43 | −1.6 | −2.0 |
WFD148-SP3 | 1168 | 1.9 | −10.5 | 1.5 | −1.54 | −0.46 | −1.4 | −1.8 |
WFD148-SP4 | 1102 | 1.7 | −11.7 | 1.3 | −1.65 | −0.50 | −1.7 | −2.1 |
WFD148-SP5 | 1181 | 2.0 | −10.1 | 1.6 | −1.52 | −0.45 | −1.1 | −1.6 |
WFD148-SP6 | 1214 | 1.8 | −10.0 | 1.4 | −1.46 | −0.43 | −1.3 | −1.7 |
WFD148-SP7 | 1265 | 1.6 | −9.4 | 1.2 | −1.38 | −0.40 | −1.3 | −1.7 |
WFD165-SP8 | 1170 | 1.2 | −6.9 | 0.8 | −1.54 | −0.46 | −2.0 | −2.4 |
WFD165-SP9 | 1274 | 1.5 | −5.5 | 1.1 | −1.36 | −0.40 | −1.4 | −1.8 |
WFD165-SP10 | 1107 | 1.6 | −7.3 | 1.2 | −1.65 | −0.50 | −1.8 | −2.2 |
WFD165-SP11 | 994 | 1.9 | −8.6 | 1.5 | −1.84 | −0.57 | −1.9 | −2.4 |
WFD165-SP12 | 1233 | 1.6 | −5.9 | 1.2 | −1.43 | −0.42 | −1.5 | −1.9 |
WFD165-SP13 | 1240 | 1.5 | −5.9 | 1.1 | −1.42 | −0.42 | −1.5 | −1.9 |
WFD165-SP14 | 1217 | 1.3 | −6.3 | 1.0 | −1.46 | −0.43 | −1.7 | −2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.-Z.; Ni, P.; Ding, J.-Y.; Wang, G.-G. Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential. Minerals 2019, 9, 382. https://doi.org/10.3390/min9060382
Zhu R-Z, Ni P, Ding J-Y, Wang G-G. Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential. Minerals. 2019; 9(6):382. https://doi.org/10.3390/min9060382
Chicago/Turabian StyleZhu, Ren-Zhi, Pei Ni, Jun-Ying Ding, and Guo-Guang Wang. 2019. "Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential" Minerals 9, no. 6: 382. https://doi.org/10.3390/min9060382
APA StyleZhu, R. -Z., Ni, P., Ding, J. -Y., & Wang, G. -G. (2019). Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential. Minerals, 9(6), 382. https://doi.org/10.3390/min9060382