Origin and Sources of Minerals and Their Impact on the Hydrocarbon Reservoir Quality of the PaleogeneLulehe Formation in the Eboliang Area, Northern Qaidam Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Sandstone Petrography
4.1.1. Detrital Composition and Texture
4.1.2. Reservoir Physical Characteristics
4.2. Diagenetic Alteration Features
4.2.1. Compaction
4.2.2. Carbonate Cements
4.2.3. Quartz Cements
4.2.4. Clay Cements
4.3. Mineral Chemistry
4.3.1. Stable Isotopes of Carbonate Cement
4.3.2. Fluid Inclusions Analysis
5. Discussion
5.1. Origin and Sources of Carbonate Cements
5.2. Origin and Sources of Quartz and Clays
5.2.1. Source of Quartz Cements
5.2.2. Source of Clay Minerals
5.3. Diagenetic Sequence
5.4. Impacts of Diagenesis on Reservoir Quality
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ajdukiewicz, J.M.; Lander, R.H. Sandstone reservoir quality prediction: The state of the art. Am. Assoc. Pet. Geol. Bull. 2010, 94, 1083–1091. [Google Scholar] [CrossRef]
- Taylor, T.R.; Kittridge, M.G.; Winefield, P.; Bryndzia, L.T.; Bonnell, L.M. Reservoir quality and rock properties modeling—Triassic and Jurassic sandstones, greater Shearwater area, UK Central North Sea. Mar. Pet. Geol. 2015, 65, 1–21. [Google Scholar] [CrossRef]
- Zhang, W.; Jian, X.; Fu, L.; Feng, F.; Guan, P. Reservoir characterization and hydrocarbon accumulation in late Cenozoic lacustrine mixed carbonate-siliciclastic fine-grained deposits of the northwestern Qaidam basin, NW China. Mar. Pet. Geol. 2018, 98, 675–686. [Google Scholar] [CrossRef]
- Busch, B.; Hilgers, C.; Lander, R.H.; Bonnell, L.M.; Adelmann, D. Reservoir quality and burial model evaluation by kinetic quartz and illite cementation modeling: Case study of Rotliegendes, north Germany. Am. Assoc. Pet. Geol. Bull. 2018, 102, 293–307. [Google Scholar] [CrossRef]
- Morad, S.; Ketzer, J.M.; De Ros, L.F. Linking Diagenesis to Sequence Stratigraphy: An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution. Link Diagenes Seq. Stratigr. 2013, 45, 1–36. [Google Scholar] [CrossRef]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. Am. Assoc. Pet. Geol. Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Leila, M.; Moscariello, A.; Šegvić, B. Depositional facies controls on the diagenesis and reservoir quality of the MessinianQawasim and Abu Madi formations, onshore Nile Delta, Egypt. Geol. J. 2019, 54, 1797–1813. [Google Scholar] [CrossRef]
- Amel, H.; Jafarian, A.; Husinec, A.; Koeshidayatullah, A.; Swennen, R. Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin. Mar. Pet. Geol. 2015, 67, 57–71. [Google Scholar] [CrossRef]
- Lima, R.D.; De Ros, L.F. The role of depositional setting and diagenesis on the reservoir quality of Devonian sandstones from the Solimões Basin, Brazilian Amazonia. Mar. Pet. Geol. 2002, 19, 1047–1071. [Google Scholar] [CrossRef]
- Henares, S.; Caracciolo, L.; Viseras, C.; Fernández, J.; Yeste, L.M. Diagenetic constraints on heterogeneous reservoir quality assessment: A Triassic outcrop analog of meandering fluvial reservoirs. Am. Assoc. Pet. Geol. Bull. 2016, 100, 1377–1398. [Google Scholar] [CrossRef]
- Morad, S.; Al-Aasm, I.S.; Nader, F.H.; Ceriani, A.; Gasparrini, M.; Mansurbeg, H. Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi oilfield, United Arab Emirates. GeoArabia 2012, 17, 17–56. [Google Scholar]
- Oluwadebi, A.G.; Taylor, K.G.; Dowey, P.J. Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sediment. Geol. 2018, 371, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez Paredes, H.C.; Catuneanu, O.; Hernández Romano, U. Controls on the quality of Miocene reservoirs, southern Gulf of Mexico. J. South Am. Earth Sci. 2018, 81, 45–65. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Morad, S.; Salem, A.; Marfil, R.; El-Ghali, M.A.; Nystuen, J.P.; Caja, M.A.; Amorosi, A.; Garcia, D.; La Iglesia, A. Diagenesis and reservoir quality evolution of palaeocene deep-water, marine sandstones, the Shetland-Faroes Basin, British continental shelf. Mar. Pet. Geol. 2008, 25, 514–543. [Google Scholar] [CrossRef]
- Karmakar, R.; Manna, S.S.; Dutta, T. A geometrical model of diagenesis using percolation theory. Phys. A Stat. Mech. Appl. 2003, 318, 113–120. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Shalaby, M.R.; Abdullah, W.H. Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen. J. Asian Earth Sci. 2012, 51, 109–120. [Google Scholar] [CrossRef]
- Bjørlykke, K. Open-system chemical behaviour of Wilcox Group mudstones. How is large scale mass transfer at great burial depth in sedimentary basins possible? A discussion. Mar. Pet. Geol. 2011, 28, 1381–1382. [Google Scholar] [CrossRef]
- Thyne, G. A model of diagenetic mass transfer between adjacent sandstone and shale. Mar. Pet. Geol. 2001, 18, 743–755. [Google Scholar] [CrossRef]
- Yuan, G.; Gluyas, J.; Cao, Y.; Oxtoby, N.H.; Jia, Z.; Wang, Y.; Xi, K.; Li, X. Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China. Mar. Pet. Geol. 2015, 62, 77–89. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Bao, Z.D.; Zhao, Y.; Jiang, L.; Zhou, Y.Q.; Gong, F.H. Origins of authigenic minerals and their impacts on reservoir quality of tight sandstones: Upper Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China. Aust. J. Earth Sci. 2017, 64, 519–536. [Google Scholar] [CrossRef]
- Furong, W.; Sheng, H.; Yuguang, H.; Tian, D.; Zhiliang, H. The distribution and origin of carbonate cements in deep-buried sandstones in the central Junggar Basin, northwest China. Geofluids 2017, 2017, 18–23. [Google Scholar] [CrossRef]
- Liu, M.; Shabaninejad, M.; Mostaghimi, P. Predictions of permeability, surface area and average dissolution rate during reactive transport in multi-mineral rocks. J. Pet. Sci. Eng. 2018, 170, 130–138. [Google Scholar] [CrossRef]
- Poursoltani, M.R.; Gibling, M.R.; Pe-Piper, G. Diagenesis, burial history, and hydrocarbon potential of Cambrian sandstone in the northern continental margin of Gondwana: A case study of the Lalun Formation of central Iran. J. Asian Earth Sci. 2019, 172, 143–169. [Google Scholar] [CrossRef]
- Christopher, B.A.; Kuiwu, L.; Oswald, G.W. Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa. Minerals 2017, 7, 88. [Google Scholar] [CrossRef]
- Feng, J.; Cao, J.; Hu, K.; Peng, X.; Chen, Y.; Wang, Y.; Wang, M. Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China. Mar. Pet. Geol. 2013, 39, 124–137. [Google Scholar] [CrossRef]
- Sun, G.; Yin, J.; Zhang, S.; Lu, X.; Zhang, S.; Shi, J. Diagenesis and sedimentary environment of Miocene series in Eboliang III area. Environ. Earth Sci. 2015, 74, 5169–5179. [Google Scholar] [CrossRef]
- Junwu, L.; Chengjin, Y.; Fengjie, L.; Yongliang, W.; Tingyong, D. Provenance analysis of the Neogene in Eboliang area Qaidam Basin. J. Palaeogeogr. 2015, 17, 186–197. (In Chinese) [Google Scholar]
- Hong, L.; Bing, Z. Neogene sedimentary facies in the Eboliang area of the northern Qaidam Basin. J. Stratigrap. 2016, 40, 57–62. (In Chinese) [Google Scholar]
- Jian, X.; Guan, P.; Zhang, D.W.; Zhang, W.; Feng, F.; Liu, R.J.; Lin, S.D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 2013, 290, 109–125. [Google Scholar] [CrossRef]
- Wang, T.; Yang, S.; Duan, S.; Chen, H.; Liu, H.; Cao, J. Multi-stage primary and secondary hydrocarbon migration and accumulation in lacustrine Jurassic petroleum systems in the northern Qaidam Basin, NW China. Mar. Pet. Geol. 2015, 62, 90–101. [Google Scholar] [CrossRef]
- Miao, W.L.; Fan, Q.S.; Wei, H.C.; Zhang, X.Y.; Ma, H.Z. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau. J. Asian Earth Sci. 2016, 127, 267–280. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Zhang, W.; Li, S.; Liu, X.; Yang, X.; Liu, Y. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin. Geosci. Front. 2012, 3, 175–187. [Google Scholar] [CrossRef]
- Zongxing, L.; Chenglin, L.; Yinsheng, M. Geothermal Field and Tectono-Thermal Evolution since the Late Paleozoic of the Qaidam Basin, Western China. Acta Geol. Sin. 2015, 89, 678. (In Chinese) [Google Scholar] [CrossRef]
- Zeqing, G.; Yinsheng, M.; Weihong, L.; Liqun, W.; Jixian, T.; Xu, Z.; Feng, M. Main factors controlling the formation of basement hydrocarbon reservoirs in the Qaidam Basin, western China. J. Pet. Sci. Eng. 2017, 149, 244–255. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980; p. 182. [Google Scholar]
- Rahman, M.J.J.; Worden, R.H. Diagenesis and its impact on the reservoir quality of Miocene sandstones (Surma Group) from the Bengal Basin, Bangladesh. Mar. Pet. Geol. 2016, 77, 898–915. [Google Scholar] [CrossRef]
- Robinson, A.; Gluyas, J. Model calculations of loss of porosity in sandstones as a result of compaction and quartz cementation. Mar. Pet. Geol. 1992, 9, 319–323. [Google Scholar] [CrossRef]
- Dutton, S.P. Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. Am. Assoc. Pet. Geol. Bull. 2008, 92, 765–787. [Google Scholar] [CrossRef]
- Morad, S.; Al-Aasm, I.S.; Ramseyer, K.; Marfil, R.; Aldahan, A.A. Diagenesis of carbonate cements in Permo-Triassic sandstones from the Iberian Range, Spain: Evidence from chemical composition and stable isotopes. Sediment. Geol. 1990, 67, 281–295. [Google Scholar] [CrossRef]
- Pszonka, J.; Wendorff, M. Carbonate cements and grains in submarine fan sandstones—the Cergowa Beds (Oligocene, Carpathians of Poland) recorded by cathodoluminescence. Int. J. Earth Sci. 2017, 106, 269–282. [Google Scholar] [CrossRef]
- Guerra, N.C.; Kiang, C.H.; Sial, A.N. Carbonate cements in contemporaneous beachrocks, Jaguaribe beach, Itamaracáisland, northeastern Brazil: Petrographic, geochemical and isotopic aspects. An. Acad. Bras. Cienc. 2005, 77, 343–352. [Google Scholar] [CrossRef]
- Sanyal, P.; Bhattacharya, S.K.; Prasad, M. Chemical diagenesis of Siwalik sandstone: Isotopic and mineralogical proxies from SuraiKhola section, Nepal. Sediment. Geol. 2005, 180, 57–74. [Google Scholar] [CrossRef]
- Xiong, D.; Azmy, K.; Blamey, N.J.F. Diagenesis and origin of calcite cement in the Flemish Pass Basin sandstone reservoir (Upper Jurassic): Implications for porosity development. Mar. Pet. Geol. 2016, 70, 93–118. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Y.; Friis, H.; Liu, K.; Wang, Y.; Zhou, L.; Zhang, S.; Zhang, H. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China. Mar. Pet. Geol. 2018, 92, 547–564. [Google Scholar] [CrossRef]
- Odigi, M.I.; Amajor, L.C. Geochemistry of carbonate cements in Cretaceous sandstones, southeast Benue Trough, Nigeria: Implications for geochemical evolution of formation waters. J. African Earth Sci. 2010, 57, 213–226. [Google Scholar] [CrossRef]
- Spotl, C.; Wrightt, V.P.; Institut, G. Groundwater dolocretes from the Upper Triassic of the Paris Basin, France: A case study of an arid, continental diageneticfacies. Sedimentology 1992, 39, 1119–1136. [Google Scholar] [CrossRef]
- Drummond, C.N.; Wilkinson, B.H.; Lohmann, K.C.; Smith, G.R. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 101, 67–79. [Google Scholar] [CrossRef]
- Irwin, H.; Curtis, C.; Coleman, M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 1977, 269, 209–213. [Google Scholar] [CrossRef]
- Travé, A.; Roca, E.; Playà, E.; Parcerisa, D.; Gómez-Gras, D.; Martín-Martín, J.D. Migration of Mn-rich fluids through normal faults and fine-grained terrigenous sediments during early development of the NeogeneVallès-Penedès half-graben (NE Spain). Geofluids 2009, 9, 303–320. [Google Scholar] [CrossRef]
- Jin, Z.; Cao, J.; Hu, W.; Zhang, Y.; Yao, S.; Wang, X.; Zhang, Y.; Tang, Y.; Shi, X. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin (northwest China): Evidence from hydrocarbon-bearing zoned calcite cement. Am. Assoc. Pet. Geol. Bull. 2008, 92, 1225–1243. [Google Scholar] [CrossRef]
- Longstaffe, F.J. Stable isotope studies of diagnetic processes. Mineral. Assoc. Can. Saskat. 1987, 13, 187–257. [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Cheng, J.; Guo, P.W.; Lin, Z.Y.; Zhang, F.Y. Distribution characters and its control factors of stable isotope in precipitation over China. Trans. Atmos. Sci. 2010, 33, 667–679. (In Chinese) [Google Scholar]
- Zhu, J.-J.; Chen, H.; Gong, G.-L. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam basin. HuanjingKexue/Environ. Sci. 2015, 36, 2748–2790. (In Chinese) [Google Scholar] [CrossRef]
- Worden, R.H.; Morad, S. Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. Quartz Cem. Sandstones 2009, 1–20. [Google Scholar] [CrossRef]
- McBride, E.F. Quartz cement in sandstones: A review. Earth Sci. Rev. 1989, 26, 69–112. [Google Scholar] [CrossRef]
- Bjørlykke, K.; Jahren, J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. Am. Assoc. Pet. Geol. Bull. 2012, 96, 2193–2214. [Google Scholar] [CrossRef]
- Surdam, R.C.; Crossey, L.J.; Hagen, E.S.; Heasler, H.P. Organic-inorganic and sandstone diagenesis. Am. Assoc. Pet. Geol. Bull. 1989, 73, 1–23. [Google Scholar]
- Liu, Y.; Hu, W.; Cao, J.; Wang, X.; Tang, Q.; Wu, H.; Kang, X. Diagenetic constraints on the heterogeneity of tight sandstone reservoirs: A case study on the Upper Triassic Xujiahe Formation in the Sichuan Basin, southwest China. Mar. Pet. Geol. 2018, 92, 650–669. [Google Scholar] [CrossRef]
- Lynch, F.L.; Mack, L.E.; Land, L.S. Burial diagenesis of illite/smectite in shales and the origins of authigenic quartz and secondary porosity in sandstones. Geochim. Cosmochim. Acta 1997, 61, 1995–2006. [Google Scholar] [CrossRef]
- Tang, L.; Gluyas, J.; Jones, S. Porosity preservation due to grain coating illite/smectite: Evidence from Buchan Formation (Upper Devonian) of the Ardmore Field, UK North Sea. Proc. Geol. Assoc. 2018, 129, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Friis, H.; Molenaar, N.; Varming, T. Chlorite meniscus cement—implications for diagenetic mineral growth after oil emplacement. Terra Nov. 2014, 26, 14–21. [Google Scholar] [CrossRef]
- Thyberg, B.; Jahren, J.; Winje, T.; Bjørlykke, K.; Faleide, J.I.; Marcussen, Ø. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Mar. Pet. Geol. 2010, 27, 1752–1764. [Google Scholar] [CrossRef]
- Virolle, M.; Brigaud, B.; Bourillot, R.; Féniès, H.; Portier, E.; Duteil, T.; Nouet, J.; Patrier, P.; Beaufort, D. Detrital clay grain coats in estuarine clastic deposits: Origin and spatial distribution within a modern sedimentary system, the Gironde Estuary (south-west France). Sedimentology 2018, 66, 859–894. [Google Scholar] [CrossRef]
- Morad, S.; Ketzer, J.M.; DeRos, F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implication for mass transfer in sedimentary basins. Sedimentology 2000, 47, 95–120. [Google Scholar] [CrossRef]
- Grundtner, M.L.; Gross, D.; Linzer, H.G.; Neuhuber, S.; Sachsenhofer, R.F.; Scheucher, L. The diagenetic history of Oligocene-Miocene sandstones of the Austrian north Alpine foreland basin. Mar. Pet. Geol. 2016, 77, 418–434. [Google Scholar] [CrossRef]
- Houseknecht, D.W. Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in quartzose sandstone. J. Sediment. Petrol. 1984, 54, 348–361. [Google Scholar] [CrossRef]
- Ehrenberg, S.N. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: Discussion; compac-tion and porosity evolution of Pliocene sandstones, Ventura Basin, California: Discussion. Am. Assoc. Pet. Geol. Bull. 1989, 73, 1274–1276. [Google Scholar]
- Cao, Z.; Liu, G.; Meng, W.; Wang, P.; Yang, C. Origin of different chlorite occurrences and their effects on tight clastic reservoir porosity. J. Pet. Sci. Eng. 2018, 160, 384–392. [Google Scholar] [CrossRef]
- Haile, B.G.; Hellevang, H.; Aagaard, P.; Jahren, J. Experimental nucleation and growth of smectite and chlorite coatings on clean feldspar and quartz grain surfaces. Mar. Pet. Geol. 2015, 68, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Line, L.H.; Jahren, J.; Hellevang, H. Mechanical compaction in chlorite-coated sandstone reservoirs—Examples from Middle—Late Triassic channels in the southwestern Barents Sea. Mar. Pet. Geol. 2018, 96, 348–370. [Google Scholar] [CrossRef]
Sample | Depth (m) | Analyzed Spot | Content (in wt. %) | Content (in mol%, Normalized with Calcium to 100 mol%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CaO | FeO | MgO | MnO | Total | Ca | Fe | Mg | Mn | |||
ES-I2 | 4216.82 | 1 | 53.46 | 0.68 | 1.56 | 0.06 | 55.76 | 94.13 | 1.36 | 4.35 | 0.16 |
ES-I2 | 4313.35 | 1 | 54.48 | 0.17 | 0.62 | 0.03 | 55.30 | 97.98 | 0.26 | 1.63 | 0.13 |
ES-I2 | 1 | 54.38 | 1.21 | 2.11 | 0.46 | 58.16 | 91.96 | 1.89 | 5.46 | 0.69 | |
ES-I2 | 2 | 52.36 | 0.89 | 0.47 | 0.19 | 53.91 | 97.68 | 0.86 | 0.93 | 0.53 | |
ES-I2 | 4323.58 | 1 | 53.67 | 0.16 | 1.76 | 0.08 | 55.67 | 97.31 | 0.49 | 2.16 | 0.04 |
ES-3 | 3622.05 | 1 | 54.76 | 3.21 | 3.86 | 0.96 | 62.97 | 83.32 | 5.63 | 9.87 | 1.18 |
ES-3 | 1 | 54.46 | 1.18 | 0.68 | 0.67 | 56.99 | 94.41 | 2.02 | 2.45 | 1.12 | |
ES-3 | 3623.30 | 2 | 53.68 | 0.97 | 1.37 | 0.14 | 56.16 | 94.71 | 1.31 | 3.72 | 0.26 |
ES-3 | 1 | 54.37 | 1.28 | 1.35 | 0.62 | 57.62 | 93.25 | 1.76 | 3.76 | 1.23 | |
ES-3 | 3627.63 | 2 | 53.67 | 0.65 | 0.49 | 0.03 | 54.84 | 97.44 | 0.98 | 1.06 | 0.52 |
ES-3 | 3631.18 | 1 | 54.35 | 1.02 | 1.16 | 0.76 | 57.29 | 96.10 | 1.36 | 1.68 | 0.86 |
ES-3 | 3632.57 | 1 | 53.69 | 1.32 | 1.25 | 0.67 | 56.93 | 95.27 | 1.98 | 1.86 | 0.89 |
LS-1 | 2810.23 | 3 | 53.96 | 1.98 | 1.16 | 0.36 | 57.46 | 95.13 | 1.73 | 2.46 | 0.68 |
LS-1 | 2813.65 | 1 | 54.39 | 0.96 | 0.68 | 0.32 | 56.35 | 96.60 | 1.46 | 1.49 | 0.45 |
LS-1 | 2820.34 | 2 | 54.36 | 1.16 | 1.53 | 0.68 | 57.73 | 93.97 | 1.76 | 3.25 | 1.02 |
Sample | Depth | Litho-logy | Carbonate Minerals | Carbonate Content (%) | δ13CPDB ‰ | δ18OPDB ‰ | T/°C |
---|---|---|---|---|---|---|---|
LS-1 | 2798.35 | Bs | 100% Ca-I | 22 | −3.33 | −12.79 | 65.60 |
LS-1 | 2799.52 | Bs | 100% Ca-I | 20 | −3.85 | −13.37 | 69.24 |
LS-1 | 2810.24 | Gss | 100% Ca-I | 21 | −3.21 | −12.95 | 66.60 |
LS-1 | 2814.64 | Bs | 100% Ca-I | 26 | −7.36 | −14.28 | 75.08 |
LS-1 | 2816.73 | Gfs | 100% Ca-I | 12 | −5.91 | −13.82 | 72.11 |
LS-1 | 2817.67 | Bss | 100% Ca-I | 24 | −3.44 | −13.57 | 70.51 |
LS-1 | 2819.36 | Bs | 100% Ca-I | 18 | −7.75 | −13.57 | 70.51 |
LS-1 | 2820.45 | Bs | 100% Ca-I | 19 | −7.1 | −12.02 | 60.87 |
ES-I2 | 2837.85 | Gbps | 100% Ca-I | 16 | −9.84 | −13.82 | 72.11 |
ES-I2 | 2781.54 | Bs | 100% Ca-I | 21 | −5.28 | −11.74 | 59.18 |
ES-I2 | 2976.39 | Bps | 70% Ca-I + 30% Do | 11 | −4.94 | −19.34 | - |
ES-I2 | 2836.36 | Bs | 100% Do | 14 | −4.81 | −13.74 | 71.60 |
ES-I2 | 2979.74 | Gfs | 100% Do | 16 | −6.7 | −11.54 | 57.98 |
ES-I2 | 2959.67 | Gfs | 100% Do | 8 | −4.87 | −11.48 | 57.62 |
ES-I2 | 3005.46 | Bs | 100% Do | 15 | −4.37 | −12.08 | 61.23 |
ES-I2 | 4333.57 | Bss | 60% Do + 40% Fc | 12 | −5.12 | −19.94 | - |
ES-I2 | 4334.56 | Bs | 100% Fc | 14 | −6.58 | −18.36 | 103.33 |
ES-I2 | 4335.15 | Bs | 100% Fc | 8 | −10.62 | −16.58 | 90.60 |
ES-3 | 3622.05 | Bs | 100% Fc | 8 | −8.81 | −18.06 | 101.14 |
ES-3 | 3623.30 | Gbs | 100% Fc | 8 | −9.57 | −16.61 | 90.81 |
ES-3 | 3626.30 | Bs | 60% Fc + 40% Do | 10 | −15.21 | −20.2 | - |
ES-3 | 3627.56 | Bs | 90% Fc + 10% Ca-II | 13 | −13.56 | −19.68 | 113.19 |
ES-3 | 3226.98 | Gbps | 100% Ca-II | 9 | −12.86 | −18.75 | 106.21 |
ES-3 | 3356.87 | Bs | 100% Ca-II | 12 | −13.87 | −19.56 | 112.28 |
ES-3 | 3598.48 | Bs | 80% Fc + 20% Ca-II | 8 | −12.89 | −19.36 | 110.77 |
ES-3 | 3629.60 | Gbps | 90% Fc + 10% Ca-II | 12 | −12.84 | −21.07 | 123.94 |
ES-3 | 3631.60 | Bs | 80% An + 20% Fc | 8 | −9.51 | −18.67 | 105.62 |
ES-3 | 3633.29 | Bs | 70% An + 30% Do | 6 | −9.38 | −19.73 | - |
ES-3 | 3635.10 | Gbs | 80% An + 20% Do | 6 | −11.51 | −19.5 | 111.82 |
ES-3 | 3637.20 | Bs | 90% An + 10% Fc | 5 | −10.82 | −19.64 | 112.88 |
ES-3 | 3639.10 | Bs | 70% Fc + 30% An | 6 | −6.69 | −18.32 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Wang, F.; Shi, J.; Chen, F.; Shi, H. Origin and Sources of Minerals and Their Impact on the Hydrocarbon Reservoir Quality of the PaleogeneLulehe Formation in the Eboliang Area, Northern Qaidam Basin, China. Minerals 2019, 9, 436. https://doi.org/10.3390/min9070436
Chen B, Wang F, Shi J, Chen F, Shi H. Origin and Sources of Minerals and Their Impact on the Hydrocarbon Reservoir Quality of the PaleogeneLulehe Formation in the Eboliang Area, Northern Qaidam Basin, China. Minerals. 2019; 9(7):436. https://doi.org/10.3390/min9070436
Chicago/Turabian StyleChen, Bo, Feng Wang, Jian Shi, Fenjun Chen, and Haixin Shi. 2019. "Origin and Sources of Minerals and Their Impact on the Hydrocarbon Reservoir Quality of the PaleogeneLulehe Formation in the Eboliang Area, Northern Qaidam Basin, China" Minerals 9, no. 7: 436. https://doi.org/10.3390/min9070436
APA StyleChen, B., Wang, F., Shi, J., Chen, F., & Shi, H. (2019). Origin and Sources of Minerals and Their Impact on the Hydrocarbon Reservoir Quality of the PaleogeneLulehe Formation in the Eboliang Area, Northern Qaidam Basin, China. Minerals, 9(7), 436. https://doi.org/10.3390/min9070436