The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir
Abstract
:1. Introduction
2. Investigation and Methodology
3. Fossils and Lithological Characteristics
3.1. Hanzhong Uplift, North of the Upper Yangtze
3.2. Qianzhong Uplift, Upper Yangtze
3.3. Yichang Submarine Highland, Middle Yangtze
4. Distribution of Sedimentary Environments and Lithologies
4.1. Rhuddanian
4.2. Aeronian
5. Impact of Sedimentary Environment on the Longmaxi Shale Reservoir
5.1. Coupling of Dark Shale Development and Water Background
5.2. Sedimentary Environment Suitable for Dark Shale Development
5.3. Reservoiring Association Characteristics of the Longmaxi Formation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yi, J.; Bao, H.; Zheng, A.; Zhang, B.; Shu, Z.; Li, J. Main factors controlling marine shale gas enrichment and high-yield wells in South China: A case study of the Fuling shale gas field. Mar. Pet. Geol. 2019, 103, 114–125. [Google Scholar] [CrossRef]
- Chen, X.; Rong, J.; Li, Y.; Boucot, A.J. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr. Palaeoclim. Palaeoecol. 2004, 204, 353–372. [Google Scholar]
- Munnecke, A.; Calner, M.; Harper, D.; Servais, T. Ordovician and Silurian sea–water chemistry, sea level, and climate: A synopsis. Palaeogeogr. Palaeoclim. Palaeoecol. 2010, 296, 389–413. [Google Scholar] [CrossRef]
- Yan, D.; Wang, H.; Fu, Q.; Chen, Z.; He, J. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation. Mar. Pet. Geol. 2015, 65, 290–301. [Google Scholar] [CrossRef]
- Liang, D.; Guo, T.; Chen, J.; Bian, L.; Zhao, Z. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1): Distribution of Four Suits of Regional Marine Source Rocks. Mar. Orig. Pet. Geol. 2008, 2, 1–16. [Google Scholar]
- Liang, D.; Guo, T.; Bian, L.; Chen, J.; Zhao, Z. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Mar. Orig. Pet. Geol. 2009, 2, 1–19. [Google Scholar]
- Zhang, C.; Zhang, W.; Guo, Y. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou. Earth. Sci. Front. 2012, 19, 136–145. [Google Scholar]
- Chen, S.; Zhu, Y.; Qin, Y.; Wang, H.; Liu, H. Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China. Mar. Pet. Geol. 2014, 57, 619–630. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Y.; Wang, H.; Liu, H.; Wei, W. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Su, W.; Li, Z.; Ettensohn, F.R.; Johnson, M.E.; Huff, W.D. Distribution of Black Shale in the Wufeng-Longmaxi Formations (Ordovician–Silurian), South China: Major Controlling Factors and Implications. Earth Sci. 2007, 6, 819–827. [Google Scholar]
- Liang, C.; Jiang, Z.; Yang, Y.; Wei, X. Shale lithofacies and reservoir space of the Wufeng–Longmaxi Formation, Sichuan Basin, China. Pet. Explor. Dev. 2012, 39, 736–743. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, D.; Li, X.; Huang, J.; Wang, S.; Wu, W. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas. Nat. Gas Ind. B 2015, 2, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Rong, J.; Mitchell, C.E.; Harper, D.A.T.; Fan, J.; Zhan, R. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation. Geol. Mag. 2000, 137, 623–650. [Google Scholar]
- Ge, Z.; Rong, J.; Yang, X. Silurian in Southwest China. In Carbonatite boistratigraphy in Southwest China; China Science Publishing House: Beijing, China, 1979; pp. 155–220. [Google Scholar]
- Rong, J.; Chen, X.; Wang, Y.; Zhang, R.; Liu, J.; Huang, B.; Tang, P.; Wu, R.; Wang, G. Northward expansion of central Guizhou oldland through the Ordovician and Silurian transition: Evidence and implications. Sci. China Earth Sci. 2011, 41, 1407–1415. [Google Scholar]
- Wang, Y.; Rong, J.; Zhan, R.; Huang, B.; Wu, R.; Wang, G. On the Ordovician–Silurian boundary strata in southwestern Hubei, and the Yichang Uplift. J. Stratigr. 2013, 3, 264–274. [Google Scholar]
- Fang, X.; Hou, J. Silurian microflora and chintinzoa in Guanyinqiao, Qijiang country, Sichuan Province and their stratigraphic significance. Prof. Pap. Stratigr. Palaeontol. 1988, 20, 198–210. [Google Scholar]
- National Stratigraphy Commission, China Geological Survey. The Stratigraphic Chart of China; Geology Publishing House: Beijing, China, 2014. [Google Scholar]
- Chen, X.; Fan, J.; Zhang, Y.; Wang, H. Subdivision and delineation of the Wufeng and Lungmachi black shales in the surface areas of the Yangtze platform. J. Stratigr. 2015, 39, 351–358. [Google Scholar]
- Fan, J.; Michael, J.M.; Chen, X.; Wang, Y.; Zhang, Y.; Chen, Q. Biography and geography of the Ordovician–Silurian Lungmachi black shale in Southern China. Sci. China Earth Sci. 2011, 54, 1854–1863. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Zhang, Y.; Xu, H.; Melchin, M.J. On the Ordovician–Silurian depositional hiatus at Taiyanghe, Enshi, Hubei Province. J. Stratigr. 2011, 50, 361–367. [Google Scholar]
- Fan, J.; Wu, L.; Chen, Z.; Chen, Q.; Zhang, L.; Soo, K. Biostratigraphy of the Wufeng—Longmachi black shales at Qilin, Xingwen county, Sichuan Province. J. Stratigr. 2013, 37, 513–520. [Google Scholar]
- Chen, X.; Xu, J.; Cheng, H.; Wang, M.; Chen, X.; Xu, A.; Deng, Z.; Wu, H.; Qiu, J.; Rong, J. Discussion on Hannan Archicontinent and formation of Dabashan Uplift. J. Stratigr. 1990, 2, 81–116. [Google Scholar]
- Chen, X. Biostratigraphy of Southwest China; China Science Publishing House: Beijing, China, 1974; pp. 223–232. [Google Scholar]
- Lin, B.; Guo, D.; Wang, X. China Strata (Part 6): Silurian in China; Geology Publishing House: Beijing, China, 1984; pp. 1–245. [Google Scholar]
- Zhang, C. Sequence-Stratigraphic Framework and its Palaeogeographical Background of the Silurian Period in the Central Guizhou Uplift and its Adjacent Areas. Master’s Thesis, China University of Geosciences, Beijing, China, 2006. [Google Scholar]
- Rong, J.; Zhan, R. Niuchang Formation, a new lithostratigraphic unit of Llandovery (Silurian) from the Upper Yangtze region. J. Stratigr. 2004, 4, 300–306. [Google Scholar]
- Jin, C. Summary of Silurian Strata Development in Southwest China. Master’s Thesis, Chengdu Institute of Geology and Mineral Resources, Chengdu, China, 1982. [Google Scholar]
- He, W.; Wang, X.; Bu, J. Sea-level Change of the Central Yangtze Sea Basin in the Late Ordovician Wufengian Period. Acta Geosci. Sin. 2002, 3, 367–375. [Google Scholar]
- Cui, J. Sedimentary Response to Tectonic Evolution of the Central Guizhou Uplift and Its Adjacent Areas. Ph.D. Thesis, Central South University, Changsha, China, 2013. [Google Scholar]
- Gong, L. Divisions, correlations and unified names of Silurian lithostratigraphies in northern and southern Guizhou. Geol. Guizhou 1990, 20, 313–323. [Google Scholar]
- Rong, J.; Markes, E.J.; Zhao, Y. Geological significance of an ancient karst rocky shoreline: A case study of an early Silurian rocky shoreline in Guizhou. Geol. Rev. 1996, 5, 448–458. [Google Scholar]
- Gong, L. New idea about division and correlation of lithostratigraphy of Lower Gaotianzhai Subgroup of Silurian in Wudang, Guiyang. Geol. Guizhou 1987, 12, 61–64. [Google Scholar]
- Zhou, K. Middle Ordovician–Early Silurian lithofacies paleogeography of Middle-Upper Yangtze and Its Southeastern Margin. Ph.D. Thesis, China Academy of Geological Sciences, Beijing, China, 2015. [Google Scholar]
- Rong, J.; Chen, X.; Zhan, R.; Fan, J.; Wang, Y.; Zhang, Y.; Li, Y.; Huang, B.; Wu, C.; Wang, G.; et al. New observation on Ordovician–Silurian boundary strata of southern Tongzi county, northern Guizhou, southwest China. J. Stratigr. 2010, 34, 337–348. [Google Scholar]
- Li, J. Reservoir Characteristics of Longmaxi Shale in the Southeast of Chongqing: A Case Study from Lujiao Outcrop Section and Well Yuye-1. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- He, W. The Sea-Level Changes during the Latest Ordovician to the Earliest Silurian in the Yangtze Basin and the Subdivision of the Ordovician–Silurian Boundary. Ph.D. Thesis, China Academy of Geological Sciences, Beijing, China, 2002. [Google Scholar]
- Rong, J. Ordovician–Silurian brachiopod turn over in South China. Geoscience 1999, 4, 74. [Google Scholar]
- Li, Y.; Lv, H.G.; Zhang, Y.; Zhang, X.L.; Shao, D.Y.; Yan, J.P.; Zhang, T.W. U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and its implication for identification of watermass restriction. Geochemica 2015, 2, 109–116. [Google Scholar]
- Zhang, T.; Kershaw, S.; Wan, Y.; Lan, G. Geochemical and facies evidence for palaeoenvironmental change during the Late Ordovician Hirnantian glaciation in South Sichuan Province, China. Glob. Planet Chang. 2000, 24, 133–152. [Google Scholar] [CrossRef]
- Zhou, K.; Mou, C.; Liang, W.; Ge, X. Tide-dominated Deltaic Deposits in Lungamachi Formation, Longshan-Yongshun Regions, Northwestern Hunan: The initial sedimentary responses to outset of “Xuefeng uplift”. Acta Sedimentol. Sin. 2014, 32, 468–477. [Google Scholar]
- Li, S.; Xiao, K.; Wo, Y.; Long, S.; Cai, G. Developmental controlling factors of upper Ordovician–Lower Silurian high quality source rocks in marine sequence, South China. Acta Sedimentol. Sin. 2008, 26, 872–880. [Google Scholar]
- Yan, D.; Wang, Q.; Chen, D.; Wang, J.; Wang, Z. Sedimentary environment and development controls of the hydrocarbon sources beds: The upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the Yangtze area. Acta Geol. Sin. 2008, 3, 321–327. [Google Scholar]
- Boucot, A.J.; Chen, X. Fossil plankton depth zones. Palaeoworld 2009, 18, 213–234. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, J.; Li, B.; Yang, S.; He, W.; Tang, X.; Ma, L.; Pei, S. Accumulation conditions and gas⁃bearing characteristic analysis of Longmaxi shale gas in northwestern Hunan Province. Xinjiang Pet. Geol. 2014, 4, 839–846. [Google Scholar]
- Zhu, Y.; Zhang, H.; Kang, W.; Wang, Y.; Chen, S. Organic nanopores of Longmachi Fm and Qiongzhusi Fm in Upper Yangtze: Biological precursor and pore network. Nat. Gas. Geosci. 2015, 2, 1507–1515. [Google Scholar]
- Wang, S.; Zou, C.; Dong, D.; Wang, Y.; Huang, J.; Guo, S. Biogenic silica of organic-rich shale in Sichuan basin and its significance for shale gas. Acta Sci. Nat. Univ. Pekin. 2014, 50, 476–486. [Google Scholar]
- Ran, B.; Liu, S.; Jansa, L.; Sun, W.; Yang, D.; Ye, Y. Origin of the Upper Ordovician–lower Silurian cherts of the Yangtze block, South China, and their palaeogeographic significance. J. Asian Earth Sci. 2015, 108, 1–17. [Google Scholar] [CrossRef]
- Ma, Y.; Pan, Z.; Zhong, N.; Connell, L.D.; Down, D.I.; Lin, W. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel 2016, 180, 106–115. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Fu, C. Experimental investigation of the stress-dependent permeability in the Longmaxi Formation shale. J. Pet. Sci. Eng. 2019, 175, 932–947. [Google Scholar] [CrossRef]
Typical Profile | Lithofacies | Thickness (m) | TOC (%) | Brittle Index (%) | Porosity (%) | |
---|---|---|---|---|---|---|
Deep water shelf | Lower Qijiang (I) | Carbonaceous- siliceous | 35.7/35.7 # | 0.99–4.77 * 2.99(6) | 53.2–61.3 (2) | 2.45–3.69 2.98(3) |
Lower Shuanghe (II) | Carbonaceous- siliceous | 49.5/49.5 | 2.00–5.35 3.38(28) | 36.6–80.1 58.9(12) | 1.76–9.66 6.44(8) | |
Lower Yongshan (X) | Carbonaceous | >37.6/>37.6 | 0.94–2.52 1.59(16) | 37.3–77.9 58.2(16) | 2.21–10.81 7.73(3) | |
Lower WX2 (XIII) | argillaceous | 77.4/77.4 | 2.13–8.00 3.47(15) | 64.0–76.0 70.8(9) | 0.53–2.80 1.26(4) | |
Shallow water shelf | Upper Qijiang (I) | Carbonaceous- argillaceous | 23.6/101.6 | 0.27–1.05 0.79(8) | 44.6–52.2 (2) | 1.54–6.47 4.43(3) |
Upper Shuanghe (II) | Carbonaceous- argillaceous | 70.2/>91.3 | 0.29–2.00 1.11(47) | 27.3–46.4 36.7(27) | 1.71–4.28 2.85(8) | |
Upper WX2 (XIII) | Argillaceous- silty | >68.6/>71.4 | 0.06–1.52 0.38(8) | 66.0–67.0 66.3(3) | 0.7–3.47 1.50(8) | |
YY1 [45] | Argillaceous | 19.3/523.1 | 0.98–3.47 2.00(15) | 37.0–66.0 50.3(8) | 1.6–2.0 1.7(8) | |
Tidal flat | Upper Fenggang (IX) | Arenaceous- argillaceous | 32/128 | 0.13–0.41 0.27(9) | 30.5–66.18 44.3(4) | 1.31–3.77 2.78(4) |
Upper Yongshan (X) | Arenaceous- argillaceous | 23.4/181.3 | 0.5–1.15 0.66(6) | 48.9–70.6 63.0(6) | 1.62–7.49 4.53(4) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Zhu, Y.; Wang, Y.; Shang, F. The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir. Minerals 2019, 9, 494. https://doi.org/10.3390/min9080494
Qu X, Zhu Y, Wang Y, Shang F. The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir. Minerals. 2019; 9(8):494. https://doi.org/10.3390/min9080494
Chicago/Turabian StyleQu, Xiaorong, Yanming Zhu, Yang Wang, and Fuhua Shang. 2019. "The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir" Minerals 9, no. 8: 494. https://doi.org/10.3390/min9080494
APA StyleQu, X., Zhu, Y., Wang, Y., & Shang, F. (2019). The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir. Minerals, 9(8), 494. https://doi.org/10.3390/min9080494