Spectral Transformations and Associated Linear Functionals of the First Kind
Abstract
:1. Introduction and Preliminaries
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
2. Darboux Transformation and Associated Polynomials of the First Kind
2.1. Christoffel Transformation and Its Associated Polynomials of First Kind
2.2. Geronimus Transformation and Its Associated Polynomials of the First Kind
- (i).
- (ii).
3. Laguerre-Hahn Linear Functional
- (1)
- If then
- (2)
- If and then
- (3)
- If and , we have the subcases:
- (3-1)
- If , then
- (3-2)
- If and , then
- (3-3)
- If and
- (3-3-1)
- In this case, the leading coefficient of reduces to . If zero, then, from item (3), . In conclusion, we would have which is contradictory with the class of . Thus, and
- If , then
- If and , then
- If , then
3.1. Linear Spectral Transformation on Laguerre-Hahn Functional
3.1.1. Christoffel Transformation
- if 0 and .
- , if , 0 and .
- , if .
3.1.2. Geronimus Transformation
4. Examples
- (i)
- Recurrence relation.
- (ii)
- Explicit formula as an hypergeometric function:
- (iii)
- (iv)
- (i)
- Explicit formula.
- (ii)
- (iii)
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szegő, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: New York, NY, USA, 1978. [Google Scholar]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2005; Volume 98. [Google Scholar]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Maroni, P. Le calcul des formes linéaires et les polynômes orthogonaux semi-classiques. In Orthogonal Polynomials and Their Applications (Segovia, 1986); Alfaro, M., Dehesa, J.S., Marcellán, F., de Francia, J.L.R., Vinuesa, J., Eds.; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1987; pp. 279–290. [Google Scholar]
- Maroni, P. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. Orthogonal Polynomials Their Appl. 1991, 9, 95–130. [Google Scholar]
- Belmehdi, S. On semi-classical linear functional of class s = 1. Classification and integral representations. Indag. Math. 1992, 3, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Bouakkaz, H.; Maroni, P. Description des polynômes orthogonaux de Laguerre-Hahn de classe zéro. Orthogonal Polynomials Their Appl. 1991, 9, 189. (In French) [Google Scholar]
- Alaya, J.; Maroni, P. Symmetric Laguerre-Hahn forms of class s = 1. Integr. Spec. Funct. 1996, 4, 301–320. [Google Scholar] [CrossRef]
- Gharbi, K.B.; Khériji, L. On the Christoffel product of a D-Laguerre–Hahn form by a polynomial of one degree. Afrik. Mat. 2021, 1–11. [Google Scholar] [CrossRef]
- Prianes, E.; Marcellán, F. Orthogonal polynomials and Stieltjes functions: The Laguerre-Hahn case. Rend. Mat. Appl. 1996, 7, 16. [Google Scholar]
- Marcellán, F.; Prianes, E. Perturbations of Laguerre-Hahn linear functionals. J. Comput. Appl. Math. 1999, 1–2, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Gautschi, W. The interplay between classical analysis and (numerical) linear algebra-a tribute to Gene Golub. Electron. Trans. Numer. Anal. 2002, 13, 119–147. [Google Scholar]
- Bueno, M.I.; Marcellán, F. Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 2004, 384, 215–242. [Google Scholar] [CrossRef]
- Bueno, M.I.; Marcellán, F. Polynomial perturbations of bilinear functionals and Hessenberg matrices. Linear Algebra Appl. 2006, 414, 64–83. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, M.; Iserles, A. On orthogonal polynomials transformed by the QR algorithm. J. Comput. Appl. Math. 1992, 43, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Belmehdi, S. On the associated orthogonal polynomials. J. Comput. Appl. Math. 1990, 32, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Van Assche, W. Orthogonal polynomials, associated polynomials and functions of the second kind. J. Comput. Appl. Math. 1991, 37, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F.; Dehesa, J.S.; Ronveaux, A. On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 1990, 30, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Zhedanov, A. Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 1997, 85, 67–86. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, M.; Marcellán, F.; Peña, A.; Rezola, M.L. On rational transformations of linear functionals: Direct problem. J. Math. Anal. Appl. 2004, 298, 171–183. [Google Scholar] [CrossRef] [Green Version]
- García-Ardila, J.C.; Marcellán, F.; Villamil-Hernández, P.H. Associated polynomials of the first kind and Darboux transformations of linear functionals. arXiv 2021, arXiv:2103.02321v1. [Google Scholar]
- Derevyagin, M.; Marcellán, F. A note on the Geronimus transformation and Sobolev orthogonal polynomials. Numer. Algorithms 2014, 67, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Derevyagin, M.; García-Ardila, J.C.; Marcellán, F. Multiple Geronimus transformations. Linear Algebra Appl. 2014, 454, 158–183. [Google Scholar] [CrossRef]
- Christoffel, E.B. Über die Gaußische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 1858, 55, 61–82. [Google Scholar]
- Gautschi, W. A survey of Gauss-Christoffel quadrature formulae. In E. B. Christoffel (Aachen/Monschau, 1979); Butzer, P.L., Fehér, F., Eds.; Birkhäuser: Basel, Switzerland, 1981; pp. 72–147. [Google Scholar]
- O’Leary, D.P.; Strakoš, Z.; Tichý, P. On sensitivity of Gauss–Christoffel quadrature. Numer. Math. 2007, 107, 147–174. [Google Scholar] [CrossRef]
- Gautschi, W. An algorithmic implementation of the generalized Christoffel Theorem. In Numerical Integration; Hammerlin, G., Ed.; International Series of Numerical Mathematics; Birkhäuser: Basel, Switzerland, 1982; Volume 57, pp. 89–106. [Google Scholar]
- Yoon, G. Darboux transforms and orthogonal polynomials. Bull. Korean Math. Soc. 2002, 39, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Geronimus, J. On polynomials orthogonal with regard to a given sequence of numbers and a theorem by W. Hahn. Izv. Akad. Nauk USSR 1940, 4, 215–228. (In Russian) [Google Scholar]
- Hahn, W. Über die Jacobischen Polynome und zwei verwandte Polynomklassen. Math. Zeit. 1935, 39, 634–638. [Google Scholar] [CrossRef]
- Maroni, P. Sur la suite de polynômes orthogonaux associée à la forme u = δc + λ(x − c)−1L. Period. Math. Hungar. 1990, 21, 223–248. [Google Scholar] [CrossRef]
- Alfaro, M.; Peña, A.; Rezola, M.L.; Marcellán, F. Orthogonal polynomials associated with an inverse quadratic spectral transform. Comput. Math. Appl. 2011, 61, 888–900. [Google Scholar] [CrossRef] [Green Version]
- Beghdadi, D.; Maroni, P. On the inverse problem of the product of a semi-classical form by a polynomial. J. Comput. Appl. Math. 1998, 88, 377–399. [Google Scholar] [CrossRef] [Green Version]
- Maroni, P.; Nicolau, I. On the inverse problem of the product of a form by a polynomial: The cubic case. Appl. Numer. Math. 2003, 45, 419–451. [Google Scholar] [CrossRef]
- Askey, R.; Wimp, J. Associated Laguerre and Hermite polynomials. Proc. R. Soc. Edinb. Sect. A 1984, 96, 15–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ardila, J.C.; Marcellán, F. Spectral Transformations and Associated Linear Functionals of the First Kind. Axioms 2021, 10, 107. https://doi.org/10.3390/axioms10020107
García-Ardila JC, Marcellán F. Spectral Transformations and Associated Linear Functionals of the First Kind. Axioms. 2021; 10(2):107. https://doi.org/10.3390/axioms10020107
Chicago/Turabian StyleGarcía-Ardila, Juan Carlos, and Francisco Marcellán. 2021. "Spectral Transformations and Associated Linear Functionals of the First Kind" Axioms 10, no. 2: 107. https://doi.org/10.3390/axioms10020107
APA StyleGarcía-Ardila, J. C., & Marcellán, F. (2021). Spectral Transformations and Associated Linear Functionals of the First Kind. Axioms, 10(2), 107. https://doi.org/10.3390/axioms10020107