A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function
Abstract
:1. Introduction
2. The Main Results
3. An Auxiliary Result
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rubinov, A.M. Turnpike sets in discrete disperse dynamical systems. Sib. Math. J. 1980, 21, 136–146. [Google Scholar]
- Rubinov, A.M. Multivalued Mappings and Their Applications in Economic Mathematical Problems; Nauka: Leningrad, Russia, 1980. [Google Scholar]
- Dzalilov, Z.; Zaslavski, A.J. Global attractors for discrete disperse dynamical systems. J. Nonlinear Convex Anal. 2009, 10, 191–198. [Google Scholar]
- Zaslavski, A.J. Turnpike sets of continuous transformations in compact metric spaces. Sib. Math. J. 1982, 23, 136–146. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Uniform convergence to global attractors for discrete disperse dynamical systems. Nonlinear Dyn. Syst. Theory 2007, 4, 315–325. [Google Scholar]
- Zaslavski, A.J. Convergence of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2008, 4, 10–19. [Google Scholar]
- Zaslavski, A.J. Structure of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2009, 6, 1–9. [Google Scholar]
- VMakarov, V.L.; Rubinov, A.M. Mathematical theory of economic dynamics and equilibria; Springer: New York, NY, USA, 1977. [Google Scholar]
- Zaslavski, A.J. Turnpike Properties in the Calculus of Variations and Optimal Control; Springer Optimization and Its Applications: New York, NY, USA, 2006. [Google Scholar]
- Zaslavski, A.J. A turnpike property of trajectories of dynamical systems with a Lyapunov function. Games 2020, 11, 63. [Google Scholar] [CrossRef]
- Samuelson, P.A. A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 1965, 55, 486–496. [Google Scholar]
- Damm, T.; Grüne, L.; Stieler, M.; Worthmann, K. An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems. SIAM J. Control. Optim. 2014, 52, 1935–1957. [Google Scholar] [CrossRef] [Green Version]
- Gugat, M. A turnpike result for convex hyperbolic optimal boundary control problems. Pure Appl. Funct. Anal. 2019, 4, 849–866. [Google Scholar]
- Gugat, M.; Trélat, E.; Zuazua, E. Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control. Lett. 2016, 90, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Zaslavski, A.J. On two classical turnpike results for the Robinson-Solow-Srinivisan (RSS) model. Adv. Math. Econ. 2010, 13, 47–97. [Google Scholar]
- Mammadov, M.A. Turnpike Theorem for an Infinite Horizon Optimal Control Problem with Time Delay. SIAM J. Control. Optim. 2014, 52, 420–438. [Google Scholar] [CrossRef]
- Porretta, A.; Zuazua, E. Long Time versus Steady State Optimal Control. SIAM J. Control. Optim. 2013, 51, 4242–4273. [Google Scholar] [CrossRef]
- Trelat, E.; Zhang, C.; Zuazua, E. Optimal shape design for 2D heat equations in large time. Pure Appl. Funct. Anal. 2018, 3, 255–269. [Google Scholar]
- Trélat, E.; Zuazua, E. The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 2015, 258, 81–114. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Turnpike Theory of Continuous-Time Linear Optimal Control Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Aseev, S.M.; Krastanov, M.I.; Veliov, V.M. Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal. 2017, 2, 395–409. [Google Scholar]
- Bachir, M.; Blot, J. Infinite Dimensional Infinite-horizon Pontryagin Principles for Discrete-time Problems. Set-Valued Var. Anal. 2014, 23, 43–54. [Google Scholar] [CrossRef]
- Bachir, M.; Blot, J. Infinite dimensional multipliers and Pontryagin principles for discrete-time problems. Pure Appl. Funct. Anal. 2017, 2, 411–426. [Google Scholar]
- Blot, J.; Hayek, N. Infinite-Horizon Optimal Control in the Discrete-Time Framework; Springer Briefs in Optimization: New York, NY, USA, 2014. [Google Scholar]
- Carlson, D.A.; Haurie, A.; Leizarowitz, A. Infinite Horizon Optimal Control; Springer: Berlin, Germany, 1991. [Google Scholar]
- Gaitsgory, V.; Grüne, L.; Thatcher, N. Stabilization with discounted optimal control. Syst. Control. Lett. 2015, 82, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Gaitsgory, V.; Mammadov, M.; Manic, L. On stability under perturbations of long-run average optimal control problems. Pure Appl. Funct. Anal. 2017, 2, 461–476. [Google Scholar]
- Sagara, N. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discret. Contin. Dyn. Syst. S 2018, 11, 1219–1232. [Google Scholar] [CrossRef] [Green Version]
- Bielecki, A.; Ombach, J. Dynamical Properties of a Perceptron Learning Process: Structural Stability Under Numerics and Shadowing. J. Nonlinear Sci. 2011, 21, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Pilyugin, S.Y. Shadowing in Dynamical Systems; Springer: Berlin, Germany, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function. Axioms 2021, 10, 45. https://doi.org/10.3390/axioms10020045
Zaslavski AJ. A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function. Axioms. 2021; 10(2):45. https://doi.org/10.3390/axioms10020045
Chicago/Turabian StyleZaslavski, Alexander J. 2021. "A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function" Axioms 10, no. 2: 45. https://doi.org/10.3390/axioms10020045
APA StyleZaslavski, A. J. (2021). A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function. Axioms, 10(2), 45. https://doi.org/10.3390/axioms10020045