Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models
Abstract
:1. Introduction
2. Research Process and Literature Review
2.1. Research Process
2.2. Literature Review
3. Materials and Methods
3.1. Theory of Malmquist Model
3.2. Theory of Epsilon-Based Measure Efficiency
4. Results and Discussions
4.1. Data Collection
4.2. Results of Malmquist Model
4.2.1. Technical Efficiency Change
4.2.2. Technological Change
4.2.3. Total Productivity Change
4.3. Results of Epsilon-Based Measure Efficiency
4.4. Discussions
5. Conclusions and Future Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Correlation Coefficient | TOA | OWE | LIA | OPE | REV | NEP | |
---|---|---|---|---|---|---|---|
Total assets (TOA) | Pearson correlation | 1 | 0.927 ** | 0.841 ** | 0.775 ** | 0.673 ** | 0.822 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 | |
Owner’s equity (OWE) | Pearson correlation | 0.927 ** | 1 | 0.576 ** | 0.822 ** | 0.527 ** | 0.921 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 | |
Liabilities (LIA) | Pearson correlation | 0.841 ** | 0.576 ** | 1 | 0.502 ** | 0.704 ** | 0.462 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 | |
Operation expense (OPE) | Pearson correlation | 0.775 ** | 0.822 ** | 0.502 ** | 1 | 0.569 ** | 0.722 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 | |
Revenue (REV) | Pearson correlation | 0.673 ** | 0.527 ** | 0.704 ** | 0.569 ** | 1 | 0.484 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 | |
Net profit (NEP) | Pearson correlation | 0.822 ** | 0.921 ** | 0.462 ** | 0.722 ** | 0.484 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Sample | 84 | 84 | 84 | 84 | 84 | 84 |
Period | Inputs | Total Assets | Owner’s Equity | Liabilities | Operation Expense |
---|---|---|---|---|---|
2015 | Total assets | 0 | 0.2003 | 0.2285 | 0.2052 |
Owner’s equity | 0.2003 | 0 | 0.2198 | 0.1677 | |
Liabilities | 0.2285 | 0.2198 | 0 | 0.2493 | |
Operation expense | 0.2052 | 0.1677 | 0.2493 | 0 | |
2016 | Total assets | 0 | 0.1932 | 0.2232 | 0.1370 |
Owner’s equity | 0.1932 | 0 | 0.2162 | 0.1161 | |
Liabilities | 0.2232 | 0.2162 | 0 | 0.2628 | |
Operation expense | 0.1370 | 0.1161 | 0.2628 | 0 | |
2017 | Total assets | 0 | 0.2783 | 0.2995 | 0.2149 |
Owner’s equity | 0.2783 | 0 | 0.2914 | 0.1478 | |
Liabilities | 0.2995 | 0.2914 | 0 | 0.2309 | |
Operation expense | 0.2149 | 0.1478 | 0.2309 | 0 | |
2018 | Total assets | 0 | 0.2123 | 0.2675 | 0.1528 |
Owner’s equity | 0.2123 | 0 | 0.2429 | 0.1425 | |
Liabilities | 0.2675 | 0.2429 | 0 | 0.1845 | |
Operation expense | 0.1528 | 0.1425 | 0.1845 | 0 | |
2019 | Total assets | 0 | 0.2253 | 0.2633 | 0.1477 |
Owner’s equity | 0.2253 | 0 | 0.2402 | 0.1396 | |
Liabilities | 0.2633 | 0.2402 | 0 | 0.1775 | |
Operation expense | 0.1477 | 0.1396 | 0.1775 | 0 | |
2020 | Total assets | 0 | 0.2518 | 0.2808 | 0.1234 |
Owner’s equity | 0.2518 | 0 | 0.2684 | 0.1313 | |
Liabilities | 0.2808 | 0.2684 | 0 | 0.1553 | |
Operation expense | 0.1234 | 0.1313 | 0.1553 | 0 |
Period | Inputs | Total Assets | Owner’s Equity | Liabilities | Operation Expense |
---|---|---|---|---|---|
2015 | Total assets | 1 | 0.5995 | 0.5431 | 0.5897 |
Owner’s equity | 0.5995 | 1 | 0.5604 | 0.6646 | |
Liabilities | 0.5431 | 0.5604 | 1 | 0.5015 | |
Operation expense | 0.5897 | 0.6646 | 0.5015 | 1 | |
2016 | Total assets | 1 | 0.6136 | 0.5537 | 0.7259 |
Owner’s equity | 0.6136 | 1 | 0.5677 | 0.7678 | |
Liabilities | 0.5537 | 0.5677 | 1 | 0.4745 | |
Operation expense | 0.7259 | 0.7678 | 0.4745 | 1 | |
2017 | Total assets | 1 | 0.4433 | 0.4011 | 0.5702 |
Owner’s equity | 0.4433 | 1 | 0.4172 | 0.7045 | |
Liabilities | 0.4011 | 0.4172 | 1 | 0.5381 | |
Operation expense | 0.5702 | 0.7045 | 0.5381 | 1 | |
2018 | Total assets | 1 | 0.5754 | 0.4651 | 0.6944 |
Owner’s equity | 0.5754 | 1 | 0.5142 | 0.7150 | |
Liabilities | 0.4651 | 0.5142 | 1 | 0.6311 | |
Operation expense | 0.6944 | 0.7150 | 0.6311 | 1 | |
2019 | Total assets | 1 | 0.5493 | 0.4734 | 0.7047 |
Owner’s equity | 0.5493 | 1 | 0.5196 | 0.7209 | |
Liabilities | 0.4734 | 0.5196 | 1 | 0.6450 | |
Operation expense | 0.7047 | 0.7209 | 0.6450 | 1 | |
2020 | Total assets | 1 | 0.4965 | 0.4384 | 0.7532 |
Owner’s equity | 0.4965 | 1 | 0.4633 | 0.7373 | |
Liabilities | 0.4384 | 0.4633 | 1 | 0.6894 | |
Operation expense | 0.7532 | 0.7373 | 0.6894 | 1 |
References
- UNCTAD. Review of Maritime Transport 2018. Available online: https://unctad.org/webflyer/review-maritime-transport-2018 (accessed on 20 February 2021).
- Rodrigue, J.-P.; Debrie, J.; Fremont, A.; Gouvernal, E. Functions and actors of inland ports: European and North American dynamics. J. Transp. Geogr. 2010, 18, 519–529. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Chung, Y.-C.; Pham, H.-T. Multi-objective optimization models for sustainable perishable intermodal multi-product networks with delivery time window. Mathematics 2021, 9, 379. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Le, T.Q.; Kewcharoenwong, P. Transportation optimization models for intermodal networks with fuzzy node capacity, detour factor, and vehicle utilization constraints. Mathematics 2020, 8, 2109. [Google Scholar] [CrossRef]
- Karam, A.; Eltawil, A.; Hegner, B.; Reinau, K. Energy-efficient and integrated allocation of berths, quay cranes, and internal trucks in container terminals. Sustainability 2020, 12, 3202. [Google Scholar] [CrossRef] [Green Version]
- Sayareh, J.; Iranshahi, S.; Golfakhrabadi, N. Service quality evaluation and ranking of container terminal operators. Asian, J. Shipp. Logist. 2016, 32, 203–212. [Google Scholar] [CrossRef]
- Hemalatha, S.; Dumpala, L.; Balakrishna, B. Service quality evaluation and ranking of container terminal operators through hybrid multi-criteria decision making methods. Asian J. Shipp. Logist. 2018, 34, 137–144. [Google Scholar] [CrossRef]
- Pham, T.Y.; Yeo, G.T. Evaluation of transshipment container terminals’ service quality in Vietnam: From the shipping com-panies’ perspective. Sustainability 2019, 11, 1503. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, M.R.P.; Ferreira, J.J.; Azevedo, S.G. Key factors of seaport competitiveness based on the stakeholder perspective: An Analytic Hierarchy Process (AHP) model. Marit. Econ. Logist. 2013, 15, 416–443. [Google Scholar] [CrossRef]
- Heejung, Y.E.O. Participation of private investors in container terminal operation: Influence of global terminal operators. Asian J. Shipp. Logist. 2015, 31, 363–383. [Google Scholar]
- Yeo, G.T.; Thai, V.V.; Roh, S.Y. An analysis of port service quality and customer satisfaction: The case of Korean container ports. Asian J. Shipp. Logist. 2015, 31, 437–447. [Google Scholar] [CrossRef] [Green Version]
- da Cruz, M.R.P.; de Matos Ferreira, J.J. Evaluating Iberian seaport competitiveness using an alternative DEA approach. Eur. Transp. Res. Rev. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Ahn, S.-B.; Lee, H.-S.; Park, H. An integrated terminal operating system for enhancing the efficiency of seaport terminal operators. Marit. Econ. Logist. 2017, 19, 428–450. [Google Scholar] [CrossRef]
- Statista. Maritime Industry in Vietnam. Available online: https://www.statista.com/topics/5936/maritime-industry-in-vietnam/ (accessed on 20 February 2021).
- Statista. Leading Sea Ports in Vietnam in 2018. Available online: https://www.statista.com/statistics/1045072/vietnam-leading-sea-ports-by-throughput/#:~:text=Vietnam%20has%20320%20ports%20of,in%20Ho%20Chi%20Minh%20City (accessed on 20 February 2021).
- Tan Cang Logistics; Stevedoring JSC. TCL—Sustainable Development. Available online: http://tancanglogistics.com/en/introduction/Pages/tcl-sustainable-development-140420170403.aspx (accessed on 20 February 2021).
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Munim, Z.H.; Schramm, H.-J. The impacts of port infrastructure and logistics performance on economic growth: The mediating role of seaborne trade. J. Shipp. Trade 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Zhu, J.; Li, J.; Wang, H.; Gajpal, Y. Evaluating the environmental performance and operational efficiency of container ports: An application to the maritime silk road. Int. J. Environ. Res. Public Health 2019, 16, 2226. [Google Scholar] [CrossRef] [Green Version]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Sałabun, W. A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Comput. Sci. 2020, 176, 3730–3740. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Wątróbski, J.; Sałabun, W. Identification of relevant criteria set in the MCDA process—Wind farm location case study. Energies 2020, 13, 6548. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Kozlov, V.; Nosov, V.; Sałabun, W. Efficiency of methods for determining the relevance of criteria in sus-tainable transport problems: A comparative case study. Sustainability 2020, 12, 7915. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Barros, C.P. A Benchmark analysis of Italian seaports using data envelopment analysis. Marit. Econ. Logist. 2006, 8, 347–365. [Google Scholar] [CrossRef]
- Ding, Z.-Y.; Jo, G.-S.; Wang, Y.; Yeo, G.-T. The relative efficiency of container terminals in small and medium-sized ports in China. Asian J. Shipp. Logist. 2015, 31, 231–251. [Google Scholar] [CrossRef] [Green Version]
- Périco, A.E.; Ribeiro da Silva, G. Port performance in Brazil: A case study using data envelopment analysis. Case Stud. Transp. Policy 2020, 8, 31–38. [Google Scholar] [CrossRef]
- Quintano, C.; Mazzocchi, P.; Rocca, A. Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. J. Clean. Prod. 2020, 259, 120979. [Google Scholar] [CrossRef]
- Zhou, G.; Min, H.; Xu, C.; Cao, Z. Evaluating the comparative efficiency of Chinese third-party logistics providers using data envelopment analysis. Int. J. Phys. Distrib. Logist. Manag. 2008, 38, 262–279. [Google Scholar] [CrossRef]
- Falsini, D.; Fondi, F.; Schiraldi, M.M. A logistics provider evaluation and selection methodology based on AHP, DEA and linear programming integration. Int. J. Prod. Res. 2012, 50, 4822–4829. [Google Scholar] [CrossRef] [Green Version]
- Park, H.G.; Lee, Y.J. The efficiency and productivity analysis of large logistics providers services in Korea. Asian J. Shipp. Logist. 2015, 31, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, A.; Rogers, K. Evaluating the efficiency of 3PL logistics operations. Int. J. Prod. Econ. 2008, 113, 235–244. [Google Scholar] [CrossRef]
- Wang, G.; Li, K.X.; Xiao, Y. Measuring marine environmental efficiency of a cruise shipping company considering corporate social responsibility. Mar. Policy 2019, 99, 140–147. [Google Scholar] [CrossRef]
- Bjurek, H. The Malmquist Total Factor Productivity Index. Scand. J. Econ. 1996, 98, 303. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Tibo, H.; Duong, D.-H. Assessing renewable energy production capabilities using DEA window and fuzzy TOPSIS model. Symmetry 2021, 13, 334. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.-T.; Le, T.-T.-H. Supporting better decision-making: A combined grey model and data envelopment analysis for efficiency evaluation in e-commerce marketplaces. Sustainability 2020, 12, 10385. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Nguyen, T.-L.; Dang, T.-T. Analyzing operational efficiency in real estate companies: An application of GM (1,1) and DEA malmquist model. Mathematics 2021, 9, 202. [Google Scholar] [CrossRef]
- Tavana, M.; Mirzagoltabar, H.; Mirhedayatian, S.M.; Saen, R.F.; Azadi, M. A new network epsilon-based DEA model for supply chain performance evaluation. Comput. Ind. Eng. 2013, 66, 501–513. [Google Scholar] [CrossRef]
- Cui, Q.; Arjomandi, A. Airline energy efficiency measures based on an epsilon-based Range-Adjusted Measure model. Energy 2021, 217, 119354. [Google Scholar] [CrossRef]
- IET Stock. Vietstock Market. Available online: https://finance.vietstock.vn/VNM/tai-chinh.htm (accessed on 20 February 2021).
- Barykin, S.; Kapustina, I.; Kirillova, T.; Yadykin, V.; Konnikov, Y. Economics of digital ecosystems. J. Open Innov. Technol. Mark. Complex. 2020, 6, 124. [Google Scholar] [CrossRef]
- Barykin, S.Y.; Kapustina, I.V.; Sergeev, S.M.; Yadykin, V.K. Algorithmic foundations of economic and mathematical modeling of network logistics processes. J. Open Innov. Technol. Mark. Complex. 2020, 6, 189. [Google Scholar] [CrossRef]
- Logistics Vietnam in 2021. Available online: https://www.bsc.com.vn/tin-tuc/tin-chi-tiet/747986-ssi-research-trien-vong-nganh-cang-bien-va-logistics-nam-2021-ky-vong-phuc-hoi-toan-cau (accessed on 22 March 2021).
- Raconteur. How Technology Is Creating the Digital Ports of the Future. Available online: https://www.raconteur.net/technology/technology-digital-port/ (accessed on 22 March 2021).
- WorkBoat. Maritime Industry Plays Key Role in Covid-19 Response. Available online: https://www.workboat.com/coastal-inland-waterways/maritime-industry-plays-key-role-in-covid-19-response (accessed on 20 February 2021).
- Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.-T. Outsourcing reverse logistics for e-commerce retailers: A two-stage fuzzy optimization approach. Axioms 2021, 10, 34. [Google Scholar] [CrossRef]
- Sałabun, W.; Urbaniak, K. A new coefficient of rankings similarity in decision-making problems. In Computational Science—ICCS 2020, Proceedings of the 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020; Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12138. [Google Scholar] [CrossRef]
Authors [Reference] | Inputs/Criteria | Outputs/Responses | Methodologies | Applied Areas |
---|---|---|---|---|
Barros [25], 2006 | Number of employees Capital investment Size of operating costs | Total sales Number of passengers Number of containers Number of ships | CCR BCC | Container port |
Zhou et al. [29], 2008 | Net fixed asset Salaries and wages Operating expenses Current liabilities | Operating income | CCR BCC | Logistics |
Hamdan and Rogers [32], 2008 | Labor hours Warehouse space Technology investment MHE | Shipping volume Order filling Space utilization | CCR | Warehouse |
Falsini et al. [30], 2012 | Industry sectors Perishable products Consumer’s goods | Quantitative benefits Efficiency score | AHP CCR LP | Logistics |
Ding et al. [26], 2015 | Terminal length MHE Staff quantity | Number of containers | Malmquist Regression | Container port |
Park and Lee [31], 2015 | Assets Capital Number of employees | Total revenue | CCR BCC Malmquist | Logistics |
Wang et al. [33], 2019 | Number of employees Energy consumption Water consumption | Revenue Total solid waste | Malmquist SBM | Shipping |
Périco and Silva [27], 2020 | Waiting time to dock Number of berths Dock areas Storage area | Total load handle | PCA | Container port |
Quintano et al. [28], 2020 | Labor Energy products | Emissions relevant Total gross weight | SBM | Container port |
This paper | Total assets Owner’s equity Liabilities Operating expense | Revenue Net profit | Malmquist EBM | Seaport |
DMUs | Seaport Terminal Company | Symbol | Code | Profit |
---|---|---|---|---|
Port-01 | Cat Lai Port Joint Stock Company | Cat Lai | CLL | 4041 |
Port-02 | Dinh Vu Port Investment and Development JSC | Dinh Vu | DVP | 10,327 |
Port-03 | Dong Nai Port JSC | Dong Nai | PDN | 5696 |
Port-04 | Tan Cang Port Logistics and Stevedoring JSC | Tan Cang | TCL | 4219 |
Port-05 | An Giang Port Joint Stock Company | An Giang | CAG | 199 |
Port-06 | Da Nang Port Joint Stock Company | Da Nang | CDN | 9098 |
Port-07 | Doan Xa Port Joint Stock Company | Doan Xa | DXP | 2463 |
Port-08 | Nghe Tinh Port Holding Joint Stock Company | Nghe Tinh | NAP | 484 |
Port-09 | Port of Hai Phong Joint Stock Company | Hai Phong | PHP | 24,587 |
Port-10 | Cam Ranh Port Joint Stock Company | Cam Ranh | CCR | 1054 |
Port-11 | Chan May Port Joint Stock Company | Chan May | CMP | 605 |
Port-12 | Quang Ninh Port | Quang Ninh | CQN | 2946 |
Port-13 | Port of Song Than ICD JSC | Song Than | IST | 1769 |
Port-14 | Saigon Port Join Stock Company | Sai Gon | SGP | 10,115 |
Period | Statistics | Total Assets | Owner’s Equity | Liabilities | Operation Expense | Revenue | Net Profit |
---|---|---|---|---|---|---|---|
2015 | Max | 252,071 | 186,043 | 82,043 | 9866 | 102,116 | 22,654 |
Min | 7281 | 4270 | 597 | 394 | 2480 | 273 | |
Average | 48,932 | 33,001 | 15,930 | 2356 | 22,338 | 4277 | |
SD | 64,662 | 44,725 | 24,200 | 2789 | 25,375 | 5908 | |
2016 | Max | 222,840 | 167,177 | 89,137 | 10,616 | 104,362 | 26,007 |
Min | 7028 | 5976 | 413 | 446 | 3574 | 354 | |
Average | 48,104 | 32,551 | 15,553 | 2533 | 23,099 | 4495 | |
SD | 59,260 | 40,028 | 24,372 | 3127 | 26,427 | 6705 | |
2017 | Max | 227,516 | 174,128 | 114,430 | 9120 | 89,895 | 20,955 |
Min | 6655 | 6323 | 331 | 478 | 2948 | 136 | |
Average | 55,455 | 35,113 | 20,342 | 2093 | 25,400 | 5507 | |
SD | 65,434 | 42,466 | 30,449 | 2151 | 24,399 | 6619 | |
2018 | Max | 237,577 | 177,990 | 118,048 | 8834 | 218,995 | 22,407 |
Min | 6602 | 6332 | 269 | 363 | 2882 | 138 | |
Average | 62,999 | 37,826 | 25,173 | 2019 | 38,326 | 5082 | |
SD | 70,335 | 43,874 | 36,725 | 2064 | 54,828 | 5827 | |
2019 | Max | 252,576 | 202,502 | 114,750 | 7816 | 88,232 | 24,587 |
Min | 6671 | 6409 | 262 | 257 | 2483 | 199 | |
Average | 63,485 | 43,741 | 19,701 | 1959 | 28,147 | 5543 | |
SD | 72,302 | 50,418 | 29,293 | 1843 | 25,060 | 6281 | |
2020 | Max | 252,576 | 202,502 | 114,750 | 7816 | 88,232 | 24,587 |
Min | 6671 | 6409 | 262 | 257 | 2483 | 199 | |
Average | 63,485 | 43,741 | 19,701 | 1959 | 28,147 | 5543 | |
SD | 72,302 | 50,418 | 29,293 | 1843 | 25,060 | 6281 |
Catch-up | Symbol | 2015⇒2016 | 2016⇒2017 | 2017⇒2018 | 2018⇒2019 | 2019⇒2020 | Average |
---|---|---|---|---|---|---|---|
Port-01 | Cat Lai | 1.1225 | 1.1994 | 0.8453 | 1.0451 | 0.9971 | 1.0419 |
Port-02 | Dinh Vu | 1.4148 | 0.7964 | 1.1960 | 0.7919 | 0.9040 | 1.0206 |
Port-03 | Dong Nai | 1.1002 | 1.1552 | 1.0571 | 1.3845 | 1.0805 | 1.1555 |
Port-04 | Tan Cang | 1.1163 | 0.9465 | 0.6440 | 1.1141 | 1.1989 | 1.0040 |
Port-05 | An Giang | 1.0371 | 0.7213 | 1.4307 | 1.1643 | 0.8803 | 1.0467 |
Port-06 | Da Nang | 0.8374 | 0.8951 | 0.9903 | 1.3193 | 1.0833 | 1.0251 |
Port-07 | Doan Xa | 0.8894 | 0.4770 | 1.1121 | 1.2718 | 1.5925 | 1.0685 |
Port-08 | Nghe Tinh | 1.4381 | 1.0974 | 1.0029 | 0.9198 | 0.9531 | 1.0823 |
Port-09 | Hai Phong | 1.1134 | 0.8553 | 0.9807 | 1.1131 | 1.1089 | 1.0343 |
Port-10 | Cam Ranh | 1.3970 | 1.2485 | 0.9228 | 1.4027 | 1.2224 | 1.2387 |
Port-11 | Chan May | 1.4715 | 1.0622 | 0.9521 | 1.0002 | 0.7385 | 1.0449 |
Port-12 | Quang Ninh | 0.7377 | 2.0892 | 2.5855 | 1.1107 | 0.2974 | 1.3641 |
Port-13 | Song Than | 0.3390 | 2.3894 | 0.5416 | 1.0505 | 1.7831 | 1.2207 |
Port-14 | Sai Gon | 0.9243 | 2.8818 | 1.3660 | 1.3342 | 1.6563 | 1.6325 |
Average | 1.0670 | 1.2725 | 1.1162 | 1.1444 | 1.1069 | 1.1414 | |
Max | 1.4715 | 2.8818 | 2.5855 | 1.4027 | 1.7831 | 1.6325 | |
Min | 0.3390 | 0.4770 | 0.5416 | 0.7919 | 0.2974 | 1.0040 | |
SD | 0.3142 | 0.6898 | 0.4858 | 0.1808 | 0.3860 | 0.1759 |
Frontier | Symbol | 2015⇒2016 | 2016⇒2017 | 2017⇒2018 | 2018⇒2019 | 2019⇒2020 | Average |
---|---|---|---|---|---|---|---|
Port-01 | Cat Lai | 1.1181 | 1.0576 | 0.9471 | 0.9807 | 1.0225 | 1.0252 |
Port-02 | Dinh Vu | 0.8320 | 1.1264 | 0.8898 | 0.9266 | 1.0262 | 0.9602 |
Port-03 | Dong Nai | 1.0673 | 0.9572 | 1.3018 | 0.8027 | 0.9383 | 1.0135 |
Port-04 | Tan Cang | 1.0050 | 1.0362 | 1.1758 | 0.9402 | 0.9794 | 1.0273 |
Port-05 | An Giang | 1.0099 | 1.2621 | 0.9066 | 0.9706 | 0.8885 | 1.0075 |
Port-06 | Da Nang | 1.0783 | 0.9908 | 1.0433 | 0.8717 | 1.0180 | 1.0004 |
Port-07 | Doan Xa | 1.0189 | 1.3883 | 0.9124 | 0.9028 | 0.9851 | 1.0415 |
Port-08 | Nghe Tinh | 1.0388 | 1.0451 | 0.9710 | 0.9601 | 0.9757 | 0.9981 |
Port-09 | Hai Phong | 1.0543 | 0.9857 | 1.0117 | 0.8627 | 1.0059 | 0.9840 |
Port-10 | Cam Ranh | 1.1095 | 1.0002 | 1.2640 | 0.8977 | 1.0351 | 1.0613 |
Port-11 | Chan May | 1.0740 | 0.9969 | 1.0919 | 0.8785 | 0.8787 | 0.9840 |
Port-12 | Quang Ninh | 1.1129 | 0.9946 | 1.3431 | 0.9594 | 1.0092 | 1.0839 |
Port-13 | Song Than | 1.0429 | 1.0036 | 1.7014 | 0.8676 | 0.5851 | 1.0401 |
Port-14 | Sai Gon | 1.0814 | 0.7475 | 1.0133 | 1.0594 | 0.8536 | 0.9510 |
Average | 1.0460 | 1.0423 | 1.1124 | 0.9200 | 0.9429 | 1.0127 | |
Max | 1.1181 | 1.3883 | 1.7014 | 1.0594 | 1.0351 | 1.0839 | |
Min | 0.8320 | 0.7475 | 0.8898 | 0.8027 | 0.5851 | 0.9510 | |
SD | 0.0717 | 0.1475 | 0.2266 | 0.0644 | 0.1187 | 0.0372 |
Malmquist | Symbol | 2015⇒2016 | 2016⇒2017 | 2017⇒2018 | 2018⇒2019 | 2019⇒2020 | Average |
---|---|---|---|---|---|---|---|
Port-01 | Cat Lai | 1.2551 | 1.2684 | 0.8006 | 1.0249 | 1.0195 | 1.0737 |
Port-02 | Dinh Vu | 1.1771 | 0.8970 | 1.0643 | 0.7337 | 0.9278 | 0.9600 |
Port-03 | Dong Nai | 1.1742 | 1.1058 | 1.3762 | 1.1114 | 1.0139 | 1.1563 |
Port-04 | Tan Cang | 1.1218 | 0.9808 | 0.7572 | 1.0475 | 1.1742 | 1.0163 |
Port-05 | An Giang | 1.0474 | 0.9103 | 1.2971 | 1.1301 | 0.7821 | 1.0334 |
Port-06 | Da Nang | 0.9030 | 0.8869 | 1.0332 | 1.1500 | 1.1028 | 1.0152 |
Port-07 | Doan Xa | 0.9062 | 0.6621 | 1.0147 | 1.1483 | 1.5687 | 1.0600 |
Port-08 | Nghe Tinh | 1.4939 | 1.1469 | 0.9738 | 0.8831 | 0.9299 | 1.0855 |
Port-09 | Hai Phong | 1.1739 | 0.8430 | 0.9921 | 0.9603 | 1.1154 | 1.0170 |
Port-10 | Cam Ranh | 1.5500 | 1.2487 | 1.1664 | 1.2591 | 1.2653 | 1.2979 |
Port-11 | Chan May | 1.5803 | 1.0589 | 1.0396 | 0.8787 | 0.6489 | 1.0413 |
Port-12 | Quang Ninh | 0.8210 | 2.0780 | 3.4727 | 1.0656 | 0.3001 | 1.5475 |
Port-13 | Song Than | 0.3536 | 2.3981 | 0.9215 | 0.9114 | 1.0434 | 1.1256 |
Port-14 | Sai Gon | 0.9996 | 2.1542 | 1.3841 | 1.4135 | 1.4138 | 1.4730 |
Average | 1.1112 | 1.2599 | 1.2352 | 1.0513 | 1.0218 | 1.1359 | |
Max | 1.5803 | 2.3981 | 3.4727 | 1.4135 | 1.5687 | 1.5475 | |
Min | 0.3536 | 0.6621 | 0.7572 | 0.7337 | 0.3001 | 0.9600 | |
SD | 0.3225 | 0.5438 | 0.6712 | 0.1734 | 0.3145 | 0.1788 |
Period | Weight to Input/Output | Epsilon | |||
---|---|---|---|---|---|
Total Assets | Owner’s Equity | Liabilities | Operation Expense | ||
2015 | 0.2503 | 0.2602 | 0.2360 | 0.2534 | 0.4226 |
2016 | 0.2545 | 0.2602 | 0.2221 | 0.2632 | 0.3795 |
2017 | 0.2353 | 0.2561 | 0.2272 | 0.2815 | 0.4827 |
2018 | 0.2445 | 0.2516 | 0.2301 | 0.2738 | 0.3975 |
2019 | 0.2428 | 0.2492 | 0.2324 | 0.2756 | 0.3944 |
2020 | 0.2415 | 0.2420 | 0.2298 | 0.2867 | 0.3970 |
DMUs | Symbol | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|
Port-01 | Cat Lai | 0.8964 | 1 | 1 | 1 | 1 | 1 |
Port-02 | Dinh Vu | 1 | 1 | 1 | 1 | 1 | 1 |
Port-03 | Dong Nai | 0.6445 | 0.8008 | 0.8313 | 0.8652 | 1 | 1 |
Port-04 | Tan Cang | 1 | 1 | 1 | 0.9611 | 1 | 1 |
Port-05 | An Giang | 1 | 1 | 0.8665 | 1 | 1 | 1 |
Port-06 | Da Nang | 0.7770 | 0.6574 | 0.6344 | 0.6394 | 0.7521 | 0.8476 |
Port-07 | Doan Xa | 1 | 0.9448 | 0.5094 | 0.6252 | 0.7992 | 1 |
Port-08 | Nghe Tinh | 0.7317 | 1 | 1 | 1 | 1 | 0.9640 |
Port-09 | Hai Phong | 0.5515 | 0.6465 | 0.5778 | 0.5827 | 0.6060 | 0.6998 |
Port-10 | Cam Ranh | 0.2717 | 0.3149 | 0.3920 | 0.4219 | 0.5281 | 0.6333 |
Port-11 | Chan May | 0.2409 | 0.2859 | 0.3171 | 0.3100 | 0.3043 | 0.2406 |
Port-12 | Quang Ninh | 0.8840 | 0.7102 | 1 | 1 | 1 | 1 |
Port-13 | Song Than | 1 | 0.6076 | 1 | 0.7646 | 0.8107 | 1 |
Port-14 | Sai Gon | 0.4655 | 0.5171 | 0.8513 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Nguyen, N.-A.-T.; Fu, H.-P.; Hsu, H.-P.; Dang, T.-T. Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models. Axioms 2021, 10, 48. https://doi.org/10.3390/axioms10020048
Wang C-N, Nguyen N-A-T, Fu H-P, Hsu H-P, Dang T-T. Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models. Axioms. 2021; 10(2):48. https://doi.org/10.3390/axioms10020048
Chicago/Turabian StyleWang, Chia-Nan, Ngoc-Ai-Thy Nguyen, Hsin-Pin Fu, Hsien-Pin Hsu, and Thanh-Tuan Dang. 2021. "Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models" Axioms 10, no. 2: 48. https://doi.org/10.3390/axioms10020048
APA StyleWang, C. -N., Nguyen, N. -A. -T., Fu, H. -P., Hsu, H. -P., & Dang, T. -T. (2021). Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models. Axioms, 10(2), 48. https://doi.org/10.3390/axioms10020048