Note on the Equivalence of Special Norms on the Lebesgue Space
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Uniformly Elliptic Operator in the Divergent Form
3.2. Fractional Integro-Differential Operator
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Dezin, A.A. On embedding theorems and the problem of continuation of functions. Dokl. Akad. Nauk SSSR 1953, 88, 741–743. [Google Scholar]
- Sobolev, L.S.; Nikolsky, S.M. Embedding theorems. Proc. All-Union Math. Congr. 1963, 1, 227–242. [Google Scholar]
- Adams, R.A. Compact lmbeddings of Weighted Sobolev Spaces on Unbounded Domains. J. Differ. Equ. 1971, 9, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Besov, O.V. On the compactness of embeddings of weighted Sobolev spaces on a domain with irregular boundary. Proc. Steklov Inst. Math. 2001, 232, 72–93. [Google Scholar]
- Maz’ya, V.G.; Poborchi, S.V. Imbedding theorems for sobolev spaces on domains with peak and on hölder domains. St. Petersburg Math. J. 2007, 18, 583–605. [Google Scholar] [CrossRef] [Green Version]
- Gol’dshtein, V.; Ukhlov, A. Weighted sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 2009, 361, 3829–3850. [Google Scholar] [CrossRef] [Green Version]
- Hajłasz, P. Sobolev spaces on an arbitrary metric spaces. Potential Anal. 1996, 5, 403–415. [Google Scholar]
- Franchi, B.; Hajłasz, P.; Koskela, P. Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier. 1999, 49, 1903–1924. [Google Scholar] [CrossRef] [Green Version]
- Ivanishko, I.A.; Krotov, V.G. Compactness of embeddings of Sobolev type on metric measure spaces. Math. Notes 2009, 86, 775–788. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Cekic, B.; Kalinin, A.V.; Mashiyeva, R.A.; Avci, M. Lp(x)(Ω)—Estimates of vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl. 2012, 389, 838–851. [Google Scholar] [CrossRef]
- Kipriyanov, I.A. On complete continuity of embedding operators in spaces of fractionally differentiable functions. Russ. Math. Surv. 1962, 17, 183–189. [Google Scholar]
- Nakhushev, A.M. The Sturm-Liouville problem for an ordinary differential equation of the second order with fractional derivatives in lower terms. Proc. Acad. Sci. USSR 1977, 234, 308–311. [Google Scholar]
- Kukushkin, M.V. Asymptotics of eigenvalues for differential operators of fractional order. Fract. Calc. Appl. Anal. 2019, 22, 658–681. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, V.E. Conditions under which systems of eigenvectors of some classes of operators form a basis. Funct. Anal. Appl. 1967, 1, 122–132. [Google Scholar] [CrossRef]
- Krein, M.G. Criteria for completeness of the system of root vectors of a dissipative operator. Am. Math. Soc. Transl. Ser. Am. Math. Soc. Provid. RI 1963, 26, 221–229. [Google Scholar]
- Markus, A.S. Expansion in root vectors of a slightly perturbed selfadjoint operator. Soviet Math. Dokl. 1962, 3, 104–108. [Google Scholar]
- Matsaev, V.I. A method for the estimation of the resolvents of non-selfadjoint operators. Soviet Math. Dokl. 1964, 5, 236–240. [Google Scholar]
- Mukminov, B.R. Expansion in eigenfunctions of dissipative kernels. Proc. Acad. Sci. USSR 1954, 99, 499–502. [Google Scholar]
- Shkalikov, A.A. Perturbations of selfadjoint and normal operators with a discrete spectrum. Russ. Math. Surv. 2016, 71, 113–174. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On One Method of Studying Spectral Properties of Non-selfadjoint Operators. In Abstract and Applied Analysis; Hindawi: London, UK, 2020. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [Google Scholar] [CrossRef]
- Kipriyanov, I.A. On spaces of fractionally differentiable functions. Proc. Acad. Sci. USSR 1960, 24, 665–882. [Google Scholar]
- Kipriyanov, I.A. The operator of fractional differentiation and powers of the elliptic operators. Proc. Acad. Sci. USSR 1960, 131, 238–241. [Google Scholar]
- Yakhshiboev, M.U. On Hadamard and Hadamard-type directional fractional integro-differentiation in weighted lebesgue spaces with mixed norm. Vladikavkaz Math. J. 2020, 22, 119–134. [Google Scholar]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences V. 44; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983. [Google Scholar]
- Yosida, K. Functional Analysis; Mir: Moscow, Russia, 1965. [Google Scholar]
- Smirnov, V.I. A Course of Higher Mathematics: Integration and Functional Analysis. Pergamon 2014, 5, 650. [Google Scholar] [CrossRef]
- Berezanskii, Y.M. Expansions in Eigenfunctions of Selfadjoint Operators; Translations of Mathematical Monographs Volume 17; American Mathematical Society: Providenve, RI, USA, 1968. [Google Scholar]
- Kukushkin, M.V. Spectral properties of fractional differentiation operators. Electron. J. Differ. Equ. 2018, 976, 1–24. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. Note on the Equivalence of Special Norms on the Lebesgue Space. Axioms 2021, 10, 64. https://doi.org/10.3390/axioms10020064
Kukushkin MV. Note on the Equivalence of Special Norms on the Lebesgue Space. Axioms. 2021; 10(2):64. https://doi.org/10.3390/axioms10020064
Chicago/Turabian StyleKukushkin, Maksim V. 2021. "Note on the Equivalence of Special Norms on the Lebesgue Space" Axioms 10, no. 2: 64. https://doi.org/10.3390/axioms10020064
APA StyleKukushkin, M. V. (2021). Note on the Equivalence of Special Norms on the Lebesgue Space. Axioms, 10(2), 64. https://doi.org/10.3390/axioms10020064