The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative
Abstract
:1. Introduction
2. Atangana’s Conformable Derivatives (Beta-Derivatives) and Methodology of Solution
He’s Semi-Inverse Method
- Firstly, with the help of the above operations, Equation (5) is converted to Equation (7);
- If possible, Equation (7) is integrated term by term, one or more times. For convenience, the integration constant(s) can be equaled to zero;
- The following trial functional (8) is constructed
- By the Ritz method, different solitary wave solutions can be obtained, such as
3. Applications
3.1. Time-Fractional Korteweg-de Vries (KdV) Equation
3.1.1. Application of HSIM
3.1.2. Application of AM
3.2. Time-Fractional Equal Width Wave Equation (EWE)
3.2.1. Application of HSIM
3.2.2. Application of AM
3.3. Time-Fractional Modified Equal Width Wave Equation (mEWE)
3.3.1. Application of HSIM
3.3.2. Application of AM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, K.; Mayeli, P.; Ansari, R. Bright and singular soliton solutions of the conformable time-fractional Klein–Gordon equations with different nonlinearities. J. Amer. Math. Soc. 2018, 28, 426–434. [Google Scholar] [CrossRef]
- Ekici, M.; Mirzazadeh, M.; Eslami, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A.; Belic, M. Optical solitons perturbation with fractional temporal evolution by first integral method with conformable fractional derivatives. Optik 2016, 127, 10659–10669. [Google Scholar] [CrossRef]
- Cenesiz, Y.; Baleanu, D.; Kurt, A.; Tasbozan, O. New exact solutions of burgers’ type equations with conformable derivative. Waves Random Complex Media 2017, 27, 103–116. [Google Scholar] [CrossRef]
- Eslami, M.; Rezazadeh, H. The first integral method for wu–zhang system with conformable time-fractional derivative. Calcolo 2016, 53, 475–485. [Google Scholar] [CrossRef]
- Tasbozan, O.; Cenesiz, Y.; Kurt, A.; Baleanu, D. New analytical solutions for conformable fractional pdes arising in mathematical physics by exp-function method. Open Phys. 2017, 15, 647–651. [Google Scholar] [CrossRef]
- Hosseini, K.; Kumar, D.; Kaplan, M.; Bejarbaneh, E.Y. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 2017, 68, 761–767. [Google Scholar] [CrossRef]
- Kurt, A.; Tasbozan, O.; Cenesiz, Y. Homotopy analysis method for conformable burgers–korteweg-de vries equation. Bull. Math. Sci. Appl. 2016, 17, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Kurt, A.; Tasbozan, O.; Baleanu, D. New solutions for conformable fractional nizhnik-novikov-veselov system via G’/G expansion method and homotopy analysis method. Opt. Quantum Electron. 2017, 49, 1–16. [Google Scholar] [CrossRef]
- Iyiola, O.; Tasbozan, O.; Kurt, A.; Cenesiz, Y. On the analytical solutions of the system of conformable time-fractional robertson equations with 1−d diffusion. Chaos Solitons Fractals 2017, 94, 1–7. [Google Scholar] [CrossRef]
- Kurt, A.; Cenesiz, Y.; Tasbozan, O. On the solution of burgers’ equation with the new fractional derivative. Open Phys. 2015, 13, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Bekir, A.; Akbulut, A. A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 2016, 85, 2843–2850. [Google Scholar] [CrossRef]
- Hosseini, K.; Mayeli, P.; Kumar, D. New exact solutions of the coupled sine-gordon equations in nonlinear optics using the modified Kudryashov method. J. Mod. Opt. 2018, 65, 361–364. [Google Scholar] [CrossRef]
- Hosseini, K.; Bejarbaneh, E.Y.; Bekir, A.; Kaplan, M. New exact solutions of some nonlinear evolution equations of pseudoparabolic type. Opt. Quantum Electron. 2017, 49, 241. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hosseini, K. Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quantum Electron. 2017, 49, 278. [Google Scholar] [CrossRef]
- Kumar, D.; Hosseini, K.; Samadani, F. The sine-gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Opt. Int. J. Light Electron. Opt. 2017, 149, 439–446. [Google Scholar] [CrossRef]
- Hosseini, K.; Bekir, A.; Kaplan, M.; Guner, O. On a new technique for solving the nonlinear conformable time-fractional differential equations. Opt. Quantum Electron. 2017, 49, 343. [Google Scholar] [CrossRef]
- Tasbozan, O.; Senol, M.; Kurt, A.; Ozkan, O. New solutions of fractional drinfeld-sokolov-wilson system in shallow water waves. Ocean. Eng. 2018, 161, 62–68. [Google Scholar] [CrossRef]
- Zafar, A.; Raheel, M.; Bekir, A. Exploring the dark and singular soliton solutions of Biswas–Arshed model with full nonlinear form. Opt. Int. J. Light Electron. Opt. 2020, 204, 164133. [Google Scholar] [CrossRef]
- Ali, K.K.; Rezazadeh, H.; Tolorposhti, A.; Bekir, A. New soliton solutions for resonant nonlinear Schrödinger’s equation having full nonlinearity. Int. J. Mod. Phys. B 2020, 34, 2050032. [Google Scholar] [CrossRef]
- Souleymanou, A.; Korkmaz, A.; Rezazadeh, H.; Takougoum, S.P.; Bekir, A. Soliton solutions in different classes for the Kaup-Newell model equation. Mod. Phys. Lett. B 2020, 34, 2050038. [Google Scholar] [CrossRef]
- Bekir, A.; Guner, O.; Ayhan, B.; Cevikel, A.C. Exact solutions for fractional differential-difference equations by (G′/G)-expansion method with modified Riemann-Liouville derivative. Adv. Appl. Math. Mech. 2016, 8, 293–305. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Opt. Int. J. Light Electron. Opt. 2020, 206, 163550. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Rabiei, F.; Baskonus, H.M.; Yel, G. Dark optical solitons to the Biswas–Arshed equation with high order dispersions and absence of the self-phase modulation. Opt. Int. J. Light Electron. Opt. 2020, 209, 164576. [Google Scholar] [CrossRef]
- Alqurana, M.; Yousef, F.; Alquran, F.; Sulaiman, T.A.; Yusuf, A. Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation. Math. Comput. Simul. 2021, 185, 62–76. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Abdel-Khalek, S.; Bayram, M.; Ahmad, H. Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear Chiral Schrödinger equation. Results Phys. 2020, 19, 103604. [Google Scholar] [CrossRef]
- Yusuf, A.; Sulaiman, T.A.; Khalil, E.M.; Bayram, M.; Ahmad, H. Construction of multi-wave complexiton solutions of the Kadomtsev-Petviashvili equation via two efficient analyzing techniques. Results Phys. 2021, 21, 103775. [Google Scholar] [CrossRef]
- Alquran, M.; Jaradat, I.; Yusuf, A.; Sulaiman, T.A. Heart-cusp and bell-shaped-cusp optical solitons for an extended two-mode version of the complex Hirota model: Application in optics. Opt. Quantum Electron. 2021, 53, 26. [Google Scholar] [CrossRef]
- Yusuf, A. Symmetry analysis, invariant subspace and conservation laws of the equation for fluid flow in porous media. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050173. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Yusuf, A.; Bilal, M.; Younis, M.; Rehman, S.U. New solitons and other solutions in saturated ferromagnetic materials modeled by Kraenkel–Manna–Merle system. Indian J. Phys. 2021. [Google Scholar] [CrossRef]
- Hosseini, K.; Matinfar, M.; Mirzazadeh, M. A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions. Opt. Int. J. Light Electron. Opt. 2020, 207, 164558. [Google Scholar] [CrossRef]
- Ali, A.T.; Hassan, E.R. General Expa-function method for nonlinear evolution equations. Appl. Math. Comput. 2010, 217, 451–459. [Google Scholar] [CrossRef]
- Korteweg, D.J.; de Vries, G. Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Schamel, H. A modified korteweg-de vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 1973, 9, 377–387. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, S. New solutions to mKdV equation. Phys. Lett. A 2004, 326, 364–374. [Google Scholar] [CrossRef]
- Wazwaz, A. New sets of solitary wave solutions to the kdv, mkdv, and the generalized kdv equations. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 331–339. [Google Scholar] [CrossRef]
- El-Wakil, S.A.; Abulwafa, E.M.; Zahran, M.A.; Mahmoud, A.A. Time-fractional KdV equation: Formulation and solution using variational methods. Nonlinear Dyn. 2011, 65, 55–63. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S. Solitary wave solutions for time fractional third order modified kdv equation using two reliable techniques G’/G-expansion method and improved G’/G-expansion method. Phys. A 2016, 448, 265–282. [Google Scholar] [CrossRef]
- Morrison, P.J.; Meiss, J.D.; Cary, J.R. Scattering of regularized long-wave solitary waves. Phys. D Nonlinear Phenom. 1984, 11, 324–336. [Google Scholar] [CrossRef]
- Hosseini, K.; Ayati, Z. Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 2016, 7, 58–66. [Google Scholar]
- Goswami, A.; Singh, J.; Kumar, D. An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Phys. A Stat. Mech. Its Appl. 2019, 524, 563–575. [Google Scholar] [CrossRef]
- Zafar, A. The Expa function method and the conformable time-fractional KdV equations. Nonlinear Eng. 2019, 8, 728–732. [Google Scholar] [CrossRef]
- Korkmaz, A. Exact solutions of space-time fractional EW and modified EW equations. Chaos Solitons Fractals 2017, 96, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Meng, X.; Wu, H.; Deng, A. Exact solutions of space-time fractional equal width equation. Therm. Sci. 2019, 23, 2307–2313. [Google Scholar] [CrossRef]
- Korkmaz, A.; Ersoy Hepson, O.; Hosseini, K.; Rezazadeh, H.; Eslami, M. On the Exact Solutions to Conformable Time Fractional Equations in EW Family Using Sine-Gordon Equation Approach. Preprints 2017, 20171–20188. [Google Scholar] [CrossRef]
- Atangana, A.; Goufo, E.F.D. Extension of matched asymptotic method to fractional boundary layers problems. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A. A novel model for the lassa hemorrhagic fever: Deathly disease for pregnant women. Neural Comput. Appl. 2015, 26, 1895–1903. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Jabbari, A.; Kheiri, H.; Bekir, A. Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and G’/G-expansion method. Comput. Math. Appl. 2011, 62, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Variational Principles for Some Nonlinear Partial Differential Equations with Variable Coefficients. Chaos Solitons Fractals 2004, 19, 847–851. [Google Scholar] [CrossRef]
- Ali, M.N.; Husnine, S.M.; Noor, S.; Ak, T. Soliton Solutions of Space-Time Fractional-Order Modified Extended Zakharov-Kuznetsov Equation in Plasma Physics. Bull. Math. Sci. Appl. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Ozkan, E.M.; Ozkan, A. Bright soliton solutions for time fractional Korteweg-de Vries equation. AIP Conf. Proc. 2021, 2325, 020028. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan, E.M.; Özkan, A. The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative. Axioms 2021, 10, 203. https://doi.org/10.3390/axioms10030203
Özkan EM, Özkan A. The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative. Axioms. 2021; 10(3):203. https://doi.org/10.3390/axioms10030203
Chicago/Turabian StyleÖzkan, Erdoğan Mehmet, and Ayten Özkan. 2021. "The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative" Axioms 10, no. 3: 203. https://doi.org/10.3390/axioms10030203
APA StyleÖzkan, E. M., & Özkan, A. (2021). The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative. Axioms, 10(3), 203. https://doi.org/10.3390/axioms10030203