On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential Fractional (p, q)-Integrodifference Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Result
- There exist positive constants such that for each and ,
- There exists a positive constant such that for each ,
- For each .
- ,
4. Existence of at Least One Solution
- There exists a positive constant M such that for each and ,
- There exists a positive constant N such that for each,
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-difference integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ernst, T. A New Notation for q-Calculus and a New q-Taylor Formula; U.U.D.M. Report 1999:25; Department of Mathematics, Uppsala University: Uppsala, Sweden, 1999; ISSN 1101-3591. [Google Scholar]
- Finkelstein, R.J. Symmetry group of the hydrogen atom. J. Math. Phys. 1967, 8, 443–449. [Google Scholar] [CrossRef]
- Finkelstein, R.J. q-gauge theory. Int. J. Mod. Phys. A 1996, 11, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Ilinski, K.N.; Kalinin, G.V.; Stepanenko, A.S. q-functional field theory for particles with exotic statistics. Phys. Lett. A 1997, 232, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, R.J. q-field theory. Lett. Math. Phys. 1995, 34, 169–176. [Google Scholar] [CrossRef]
- Finkelstein, R.J. The q-Coulomb problem. J. Math. Phys. 1996, 37, 2628–2636. [Google Scholar] [CrossRef]
- Cheng, H. Canonical Quantization of Yang-Mills Theories. Perspectives in Mathematical Physics; International Press: Boston, MA, USA, 1996. [Google Scholar]
- Finkelstein, R.J. q-gravity. Lett. Math. Phys. 1996, 38, 53–62. [Google Scholar] [CrossRef]
- Negadi, T.; Kibler, M. A q-deformed Aufbau Prinzip. J. Phys. A Math. Gen. 1992, 25, 157–160. [Google Scholar] [CrossRef]
- Siegel, W. Introduction to String Field Theory, Volume 8 of Advanced Series in Mathematical Physics; World Scientific Publishing: Teaneck, NJ, USA, 1988. [Google Scholar]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Phil. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edin. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comp. 1974, 28, 185–202. [Google Scholar] [CrossRef]
- Brikshavana, T.; Sitthiwirattham, T. On Fractional Hahn Calculus. Adv. Differ. Equ. 2017, 354, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On Fractional Symmetric Hahn Calculus. Mathematics 2019, 7, 873. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Math. Phys. Math. Gen. 1991, 24, 5683–5701. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 1–21. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402, Corrigendum in Appl. Math. Comput 2015, 269, 744 –746. [Google Scholar] [CrossRef]
- Mursaleen, M.; Khan, F.; Khan, A. Approximation by (p, q)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 2016, 10, 1725–1740. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Mursaleen, M.; Alkhaldi, A.H. Convergence of iterates of q-Bernstein and (p, q)-Bernstein operators and the Kelisky-Rivlin type theorem. Filomat 2018, 32, 4351–4364. [Google Scholar] [CrossRef]
- Jebreen, H.B.; Mursaleen, M.; Ahasan, M. On the convergence of Lupas (p, q)-Bernstein operators via contraction principle. J. Ineq. Appl. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Sharma, V. Statistical approximation by (p, q)-analogue of Bernstein-Stancu operators. Azerbaijan J. Math. 2018, 8, 100–121. [Google Scholar]
- Khan, K.; Lobiyal, D.K. Bezier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Gupta, V.; Malik, N. (p, q)-Beta functions and applications in approximation. Bol. Soc. Mat. Mex. 2018, 24, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.T.; Zhang, W.H.; Cai, Q.B. (p, q)-gamma operators which preserve x2. J. Inequal. Appl. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nasiruzzaman, M.; Mukheimer, A.; Mursaleen, M. Some Opial-type integral inequalities via (p, q)-calculus. J. Ineq. Appl. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Basu, C.; Panwar, V. On the (p, q)-Melin Transform and Its Applications. Acta Math. Sci. Ser. B 2021, 41, 1719–1732. [Google Scholar] [CrossRef]
- Aral, A.; Deniz, E.; Erbay, H. The Picard and Gauss-Weierstrass singular integral in (p, q)-calculus. Bull. Malays. Math. Sci. Soc. 2020, 43, 1569–1583. [Google Scholar] [CrossRef]
- Kamsrisuk, N.; Promsakon, C.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for (p, q)-difference equations. Differ. Equ. Appl. 2018, 10, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Promsakon, C.; Kamsrisuk, N.; Ntouyas, S.K.; Tariboon, J. On the second-order quantum (p, q)-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, 2018, 9089865. [Google Scholar] [CrossRef] [Green Version]
- Nuntigrangjana, T.; Putjuso, S.N.; Ntouyas, S.K.; Tariboon, J. Impulsive quantum (p, q)-difference equations. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Soontharanon, J.; Sitthiwirattham, T. On Fractional (p, q)-Calculus. Adv. Differ. Equ. 2020, 2020, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Pheak, N.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Fractional (p, q)-Calculus on Finite Intervals and Some Integral Inequalities. Symmetry 2021, 13, 504. [Google Scholar]
- Pheak, N.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Praveen Agarwal, Some trapezoid and midpoint type inequalities via fractional (p, q)-calculus. Adv. Differ. Equ. 2021, 2021, 1–22. [Google Scholar]
- Soontharanon, J.; Sitthiwirattham, T. Existence Results of Nonlocal Robin Boundary Value Problems for Fractional (p, q)-Integrodifference Equations. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S. On a nonlinear fractional (p, q)-difference Schrödinger equation. J. Appl. Math. Comput. 2021. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S. Positive solutions for fractional (p, q)-difference boundary value problems. J. Appl. Math. Comput. 2021. [Google Scholar] [CrossRef]
- Griffel, D.H. Applied Functional Analysis; Ellis Horwood Publishers: Chichester, UK, 1981. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cone; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soontharanon, J.; Sitthiwirattham, T. On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential Fractional (p, q)-Integrodifference Equations. Axioms 2021, 10, 264. https://doi.org/10.3390/axioms10040264
Soontharanon J, Sitthiwirattham T. On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential Fractional (p, q)-Integrodifference Equations. Axioms. 2021; 10(4):264. https://doi.org/10.3390/axioms10040264
Chicago/Turabian StyleSoontharanon, Jarunee, and Thanin Sitthiwirattham. 2021. "On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential Fractional (p, q)-Integrodifference Equations" Axioms 10, no. 4: 264. https://doi.org/10.3390/axioms10040264
APA StyleSoontharanon, J., & Sitthiwirattham, T. (2021). On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential Fractional (p, q)-Integrodifference Equations. Axioms, 10(4), 264. https://doi.org/10.3390/axioms10040264