A Series Representation for the Hurwitz–Lerch Zeta Function
Abstract
:1. Significance Statement
2. Introduction
The Incomplete Gamma Function
3. The Hurwitz–Lerch Zeta Function
4. Hurwitz–Lerch Zeta Function in Terms of the Contour Integral
5. Incomplete Gamma Function in Terms of the Contour Integral
6. The Hurwitz–Lerch Zeta Function in Terms of the Infinite Sum of the Incomplete Gamma Function
7. Special Cases
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lerch, M. Note sur la fonction Re(w,x,s) = . Acta Math. 1887, 11, 19–24. (In French) [Google Scholar] [CrossRef]
- Erdéyli, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Guillera, J.; Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 2008, 16, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248 (2012a:33001); U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010.
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Choi, J.; Şahin, R.; Yağcı, O.; Kim, D. Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry 2020, 12, 1431. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Garunkštis, R. The Lerch Zeta-Function; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Prudnikov, A.P.; Brychkov, I.A.; Marichev, O.I. Integrals and Series, More Special Functions; USSR Academy of Sciences: Moscow, Russia, 1990; Volume 1. [Google Scholar]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: New York, NY, USA, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. A Series Representation for the Hurwitz–Lerch Zeta Function. Axioms 2021, 10, 279. https://doi.org/10.3390/axioms10040279
Reynolds R, Stauffer A. A Series Representation for the Hurwitz–Lerch Zeta Function. Axioms. 2021; 10(4):279. https://doi.org/10.3390/axioms10040279
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2021. "A Series Representation for the Hurwitz–Lerch Zeta Function" Axioms 10, no. 4: 279. https://doi.org/10.3390/axioms10040279
APA StyleReynolds, R., & Stauffer, A. (2021). A Series Representation for the Hurwitz–Lerch Zeta Function. Axioms, 10(4), 279. https://doi.org/10.3390/axioms10040279