New Expressions for Sums of Products of the Catalan Numbers
Abstract
:1. Introduction
2. The Proof of Theorem 1
3. The Proof of Theorem 2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E. Catalan numbers, q-Catalan numbers and hypergeometric series. J. Combin. Theory Ser. A 1987, 44, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Basic, B. On quotients of values of Euler’s function on the Catalan numbers. J. Number Theory 2016, 169, 160–173. [Google Scholar] [CrossRef]
- Hilton, P.; Pedersen, J. Catalan numbers, their generalization and their uses. Math. Intell. 1991, 13, 64–75. [Google Scholar] [CrossRef]
- Miana, P.J.; Romero, N. Moments of combinatorial and Catalan numbers. J. Number Theory 2010, 130, 1876–1887. [Google Scholar] [CrossRef] [Green Version]
- Stanley, R.P. Catalan Numbers; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Mahmoud, M.; Qi, F. Three identities of the Catalan-Qi numbers. Mathematics 2016, 4, 35. [Google Scholar] [CrossRef]
- Touchard, J. Sur Certaines équations Fonctionnelles. In Proceedings of the International Mathematical Congress, Toronto, ON, Canada, 11–16 August 1924; Volume 1, pp. 465–472. [Google Scholar]
- Hilton, P.; Pedersen, J. The ballot problem and Catalan numbers. Nieuw Arch. Voor Wiskd. 1990, 8, 209–216. [Google Scholar]
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Qi, F.; Cerone, P. Some properties of the Fuss-Catalan numbers. Mathematics 2018, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Differential equations associated with Catalan-Daehee numbers and their applications. RACSAM 2017, 111, 1071–1081. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, H.-I. Revisit symmetric identities for the λ-Catalan polynomials under the symmetry group of degree n. Proc. Jangjeon Math. Soc. 2016, 19, 711–716. [Google Scholar]
- Kim, T.; Kim, D.S. Some identities of Catalan-Daehee polynomials arising from umbral calculus. Appl.Comput. Math. 2017, 16, 177–189. [Google Scholar]
- Kim, D.S.; Kim, T. Triple symmetric identities for ω-Catalan polynomials. J. Korean Math. Soc. 2017, 54, 1243–1264. [Google Scholar]
- Qi, F.; Mahmoud, M.; Shi, X.T.; Liu, F.F. Some properties of the Catalan-Qi function related to the Catalan numbers. SpringerPlus 2016, 5, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Chen, L. On the Catalan numbers and some of their identities. Symmetry 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, Z. A note on the sequence related to Catalan numbers. Symmetry 2019, 11, 371. [Google Scholar] [CrossRef] [Green Version]
- Comtet, L. Advanced Combinatorics, The Art of Finite and Infinite Expansions; Reidel Publishing: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Howard, F.T. A special class of Bell polynomials. Math. Comput. 1980, 35, 977–989. [Google Scholar] [CrossRef]
- Qi, F.; Zheng, M.-M. Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 2015, 258, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Shi, X.T.; Liu, F.F.; Kruchinin, D.V. Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. 2017, 7, 857–871. [Google Scholar]
- Qi, F.; Zhao, J.L. Some properties of the Bernoulli numbers of the second kind and their generating function. Bull. Korean Math. Soc. 2018, 55, 1909–1920. [Google Scholar]
- Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discret. Math. 2018, 12, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. RACSAM 2019, 113, 1–9. [Google Scholar] [CrossRef]
- Carlitz, L. q-Bernoulli numbers and polynomials. Duke Math. J. 1948, 15, 987–1000. [Google Scholar] [CrossRef]
- Carlitz, L. q-Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 1954, 76, 332–350. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M. On weighted q-Daehee polynomials with their applications. Indag. Math. 2019, 30, 365–374. [Google Scholar] [CrossRef]
- Lim, D. Some identities for Carlitz type q-Daehee polynomials. Ramanujan J. 2019, 50, 195–209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; He, Y. New Expressions for Sums of Products of the Catalan Numbers. Axioms 2021, 10, 330. https://doi.org/10.3390/axioms10040330
Xie C, He Y. New Expressions for Sums of Products of the Catalan Numbers. Axioms. 2021; 10(4):330. https://doi.org/10.3390/axioms10040330
Chicago/Turabian StyleXie, Conghui, and Yuan He. 2021. "New Expressions for Sums of Products of the Catalan Numbers" Axioms 10, no. 4: 330. https://doi.org/10.3390/axioms10040330
APA StyleXie, C., & He, Y. (2021). New Expressions for Sums of Products of the Catalan Numbers. Axioms, 10(4), 330. https://doi.org/10.3390/axioms10040330