A New Approach on Transforms: Formable Integral Transform and Its Applications
Abstract
:1. Introduction
2. Definitions and Theorems
3. Duality with Transforms and Some Examples
3.1. Dualities between Formable Transform and Other Integral Transforms
- Formable–Laplace duality: let be the Formable transform and ) be the Laplace transform of the same function , then it is clear that
- Formable–Elzaki duality: let be the Elzaki transform of , then
- Formable–Sumudu duality: let be the Sumudu transform of , then
- Formable–Natural duality: let be the Natural transform of , then
- Formable–Shehu duality: let V(s,u) be the Shehu transform of , then,
- Formable–ARA duality: let (s) be the ARA transform of , then
3.2. Examples of Formable Transform for Some Functions
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | ||
---|---|---|
1 | 1 | 1 |
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 | ||
16 | ||
17 | ||
18 | ||
19 | ||
20 | ||
21 | ||
22 | ||
23 | ||
24 | ||
25 | ||
26 | ||
27 | ||
28 | ||
29 | ||
30 | ||
31 | ||
32 | ||
33 | ||
34 | ||
35 | ||
36 | ||
37 | ||
38 | ||
39 | ||
40 | ||
41 | ||
42 |
No. | Property | Definition |
---|---|---|
1 | Definition | |
2 | Inverse | |
3 | Derivative | |
4 | Product shift | |
5 | Product shift and derivative | |
6 | Division shift | |
7 | Convolution |
No. | Function | Definition |
---|---|---|
1 | Bessel function | |
2 | Modified Bessel function | |
3 | Sine integral | |
4 | Cosine integral |
No. | Integral Transform | Definition |
---|---|---|
1 | Laplace transform | |
2 | Fourier transform | |
3 | Mellin transform | |
4 | Elzaki transform | |
5 | Sumudu transform | |
6 | Natural transform | |
7 | Shehu transform | |
8 | ARA transform |
No. | |||||
---|---|---|---|---|---|
1 | 1 | 1 | |||
2 | |||||
3 | |||||
4 | |||||
5 | |||||
6 | |||||
7 | |||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 |
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Roubíček, T. Nonlinear Partial Differential Equations with Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Gharib, G.; Saadeh, R. Reduction of the Self-dual Yang-Mills Equations to Sinh-Poisson Equation and Exact Solutions. WSEAS Interact. Math. 2021, 20, 540–546. [Google Scholar] [CrossRef]
- Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Birkhäuser: Boston, MA, USA, 2005. [Google Scholar]
- Sobczyk, K. Stochastic Differential Equations: With Applications to Physics and Engineering; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Tian, D.; Ain, Q.T.; Anjum, N.; He, C.H.; Cheng, B. Fractal N/MEMS: From pull-in instability to pull-in stability. Fractals 2021, 29, 2150030. [Google Scholar] [CrossRef]
- Tian, D.; He, C.-H. A fractal micro-electromechanical system and its pull-in stability. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1380–1388. [Google Scholar] [CrossRef]
- He, C.-H.; Tian, D.; Moatimid, G.M.; Salman, H.F.; Zekry, M.H. Hybrid Rayleigh -Van der Pol-Duffing Oscillator (HRVD): Stability Analysis and Controller. J. Low Freq. Noise Vib. Act. Control 2021. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: London, UK, 1946. [Google Scholar]
- Spiegel, M.R. Theory and Problems of Laplace Transforms; Schaums Outline Series; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Agwa, H.A.; Ali, F.M.; Kılıçman, A. A new integral transform on time scales and its applications. Adv. Differ. Equ. 2012, 2012, 60. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A. A Note on the Triple Laplace Transform and Its Applications to Some Kind of Third-Order Differential Equation. Abstr. Appl. Anal. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Dattoli, G.; Martinelli, M.R.; Ricci, P.E. On new families of integral transforms for the solution of partial differential equations. Integral Transform. Spéc. Funct. 2005, 16, 661–667. [Google Scholar] [CrossRef]
- Bulut, H.; Baskonus, H.M.; Belgacem, F.B.M. The Analytical Solution of Some Fractional Ordinary Differential Equations by the Sumudu Transform Method. Abstr. Appl. Anal. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Weerakoon, S. The Sumudu transform and the Laplace transform: Reply. Int. J. Math. Educ. Sci. Technol. 1997, 28, 159–160. [Google Scholar]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.-J. Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstr. Appl. Anal. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Albayrak, D.; Purohit, S.D.; Faruk, U.Ç. Certain inversion and representation formulas for q-Sumudu transforms. Hacet. J. Math. Stat. 2014, 43, 699–713. [Google Scholar]
- Yang, X.-J.; Yang, Y.; Cattani, C.; Zhu, M. A new technique for solving the 1-D burgers equation. Therm. Sci. 2017, 21 (Suppl. S1), 129–136. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.; Elzaki, T.M.; Elbadri, M.; Mohamed, M.Z. Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform). Ain Shams Eng. J. 2020, 2020. [Google Scholar] [CrossRef]
- Sullivan, D.M. Z-transform theory and the FDTD method. IEEE Trans. Antennas Propag. 1996, 44, 28–34. [Google Scholar] [CrossRef]
- Butzer, P.L.; Jansche, S. A direct approach to the Mellin transform. J. Fourier Anal. Appl. 1997, 3, 325–376. [Google Scholar] [CrossRef]
- Makarov, A.M. Application of the Laplace-Carson method of integral transformation to the theory of unsteady visco-plastic flows. J. Eng. Phys. Thermophys. 1970, 19, 94–99. [Google Scholar]
- Yu, L.; Huang, M.; Chen, M.; Chen, W.; Huang, W.; Zhu, Z. Quasi-discrete Hankel transform. Opt. Lett. 1998, 23, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Ul Rahman, J.; Lu, D.; Suleman, M.; He, J.H.; Ramzan, M. He–Elzaki method for spatial diffusion of biological population. Fractals 2019, 27, 1950069. [Google Scholar] [CrossRef]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A. N-transform properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Maitama, S.; Zhao, W. New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. arXiv 2019, arXiv:1904.11370. Available online: https://arxiv.org/abs/1904.11370 (accessed on 15 October 2021).
- Cetinkaya, S.; Demir, A.; Sevindir, H.K. Solution of Space-Time-Fractional Problem by Shehu Variational Iteration Method. Adv. Math. Phys. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. A new integral transform: Ara transform and its properties and applications. Symmetry 2020, 12, 925. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R. A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform. Mathematics 2021. [Google Scholar]
- Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, M. A new efficient technique using Laplace transforms and smooth expansions to construct a series solutionsto the time-fractional Navier-Stokes equations. Alex. Eng. J. 2021, in press. [Google Scholar]
- Saadeh, R. Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 2021, 60, 4583–4591. [Google Scholar] [CrossRef]
- Saadeh, R. Numerical solutions of fractional convection-diffusion equation using finite-difference and finite-volume schemes. J. Math. Comput. Sci. 2021, 11, 7872–7891. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadeh, R.Z.; Ghazal, B.f. A New Approach on Transforms: Formable Integral Transform and Its Applications. Axioms 2021, 10, 332. https://doi.org/10.3390/axioms10040332
Saadeh RZ, Ghazal Bf. A New Approach on Transforms: Formable Integral Transform and Its Applications. Axioms. 2021; 10(4):332. https://doi.org/10.3390/axioms10040332
Chicago/Turabian StyleSaadeh, Rania Zohair, and Bayan fu’ad Ghazal. 2021. "A New Approach on Transforms: Formable Integral Transform and Its Applications" Axioms 10, no. 4: 332. https://doi.org/10.3390/axioms10040332
APA StyleSaadeh, R. Z., & Ghazal, B. f. (2021). A New Approach on Transforms: Formable Integral Transform and Its Applications. Axioms, 10(4), 332. https://doi.org/10.3390/axioms10040332