From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods
Abstract
:1. Introduction
2. From Time-Collocated to Leapfrog Fundamental Schemes for ADI FDTD Method
2.1. Time-Collocated Fundamental Schemes for ADI FDTD Method
2.1.1. Fundamental Implicit E-E Scheme for ADI FDTD Method
2.1.2. Fundamental Implicit E-H Scheme for ADI FDTD Method
2.2. From Time-Collocated to Leapfrog Schemes for ADI FDTD Method
2.3. Leapfrog Fundamental Scheme for ADI FDTD Method
3. From Time-Collocated to Leapfrog Fundamental Schemes for CDI FDTD Method
3.1. Time-Collocated Fundamental Scheme for CDI FDTD Method
- –
- Input processing:
- –
- Output processing:
3.2. From Time-Collocated to Leapfrog Schemes for CDI FDTD Method
3.3. Leapfrog Fundamental Scheme for CDI FDTD Method
4. Discussion
- -
- First procedure for from to :
- -
- Second procedure for from n to :
- -
- First procedure for from to :Second procedure for from n to :
- -
- First procedure for from to :
- -
- Second procedure for from n to :
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Namiki, T. A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microw. Theory Tech. 1999, 47, 2003–2007. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, Z.; Zhang, J. A finite-difference time-domain method without the Courant stability conditions. IEEE Microw. Guided Wave Lett. 1999, 9, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Chen, Z.; Zhang, J. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 2000, 48, 1550–1558. [Google Scholar]
- Namiki, T. 3-D ADI-FDTD method—Unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 2000, 48, 1743–1748. [Google Scholar] [CrossRef]
- Fu, W.; Tan, E.L. Development of split-step FDTD method with higher order spatial accuracy. Electron. Lett. 2004, 40, 1252–1254. [Google Scholar] [CrossRef]
- Fu, W.; Tan, E.L. Compact higher-order split-step FDTD method. Electron. Lett. 2005, 41, 397–399. [Google Scholar] [CrossRef]
- Tan, E.L. Unconditionally stable LOD-FDTD method for 3-D Maxwell’s equations. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 85–87. [Google Scholar] [CrossRef]
- Tan, E.L. Acceleration of LOD-FDTD method using fundamental scheme on graphics processor units. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 648–650. [Google Scholar] [CrossRef]
- Gan, T.H.; Tan, E.L. Unconditionally stable fundamental LOD-FDTD method with second-order temporal accuracy and complying divergence. IEEE Trans. Antennas Propag. 2013, 61, 2630–2638. [Google Scholar] [CrossRef]
- Shibayama, J.; Hirano, T.; Yamauchi, J.; Nakano, H. Efficient implementation of frequency-dependent 3D LOD-FDTD method using fundamental scheme. Electron. Lett. 2012, 48, 774–775. [Google Scholar] [CrossRef]
- Shibayama, J.; Oikawa, T.; Hirano, T.; Yamauchi, J.; Nakano, H. Fundamental LOD-BOR-FDTD method for the analysis of plasmonic devices. IEICE Trans. Electron. 2014, E97-C, 707–709. [Google Scholar] [CrossRef]
- Shibayama, J.; Ito, M.; Yamauchi, J.; Nakano, H. A Fundamental LOD-FDTD Method in Cylindrical Coordinates. IEEE Photon. Technol. Lett. 2017, 29, 865–868. [Google Scholar] [CrossRef]
- Rana, M.M.; Mohan, A.S. Convolutional perfectly matched layer ABC for 3-D LOD-FDTD using fundamental scheme. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 388–390. [Google Scholar] [CrossRef]
- Rana, M.M. Fundamental scheme-based nonorthogonal LOD-FDTD for analyzing curved structures. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 337–340. [Google Scholar] [CrossRef]
- Tan, E.L. Efficient algorithms for Crank–Nicolson-based finite-difference time-domain methods. IEEE Trans. Microw. Theory Tech. 2008, 56, 408–413. [Google Scholar] [CrossRef]
- Tan, T.; Liu, Q.H. Unconditionally stable ADI/Crank–Nicolson implementation and lossy split error revisited. IEEE Trans. Antennas Propag. 2013, 61, 5627–5636. [Google Scholar] [CrossRef]
- Wu, P.; Xie, Y.; Jiang, H.; Natsuki, T. Performance enhanced Crank-Nicolson boundary conditions for EM problems. IEEE Trans. Antennas Propag. 2021, 69, 1513–1527. [Google Scholar] [CrossRef]
- Sadrpour, S.; Nayyeri, V.; Soleimani, M.; Ramahi, O.M. A new efficient unconditionally stable finite-difference time-domain solution of the wave equation. IEEE Trans. Antennas Propag. 2017, 65, 3114–3121. [Google Scholar] [CrossRef]
- Moradi, M.; Nayyeri, V.; Ramahi, O.M. An unconditionally stable single-field finite-difference time-domain method for the solution of Maxwell equations in three dimensions. IEEE Trans. Antennas Propag. 2020, 68, 3859–3868. [Google Scholar] [CrossRef]
- Sun, G.; Trueman, C.W. Efficient implementations of the Crank–Nicolson scheme for the finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 2006, 54, 2275–2284. [Google Scholar]
- Peaceman, D.W.; Rachford, H.H., Jr. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 1955, 3, 28–41. [Google Scholar] [CrossRef]
- D’Yakonov, Y.G. Some difference schemes for solving boundary problems. U.S.S.R. Comput. Math. Math. Phys. 1963, 3, 55–77. [Google Scholar] [CrossRef]
- Douglas, J.; Gunn, J.E. A general formulation of alternating direction methods part I: Parabolic and hyperbolic problems. Numer. Math. 1964, 6, 428–453. [Google Scholar] [CrossRef]
- Strang, G. On construction and comparison of difference schemes. SIAM J. Numer. Anal. 1968, 5, 506–516. [Google Scholar] [CrossRef]
- Mitchell, A.R.; Griffiths, D.F. The Finite-Difference Method in Partial Differential Equations; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Strikwerda, J.C. Finite Difference Schemes and Partial Differential Equations; SIAM: New Delhi, India, 2004. [Google Scholar]
- Thomas, J.W. Numerical Partial Differential Equations: Finite Difference Methods; Springer: New York, NY, USA, 1998. [Google Scholar]
- Tan, E.L. Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 2008, 56, 170–177. [Google Scholar] [CrossRef]
- Tan, E.L. Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps. Progr. Electromagn. Res. 2020, 168, 39–59. [Google Scholar] [CrossRef]
- Cooke, S.J.; Botton, M.; Antonsen, T.M.; Levush, B. A leapfrog formulation of the 3D ADI-FDTD algorithm. Int. J. Numer. Model 2009, 22, 187–200. [Google Scholar] [CrossRef]
- Gan, T.H.; Tan, E.L. Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method. Prog. Electromagn. Res. M 2012, 23, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.H.; Tan, E.L. Unconditionally stable leapfrog ADI-FDTD method for lossy media. Prog. Electromagn. Res. M 2012, 26, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.C.; Chen, Z.; Yu, Y.; Yin, W.Y. An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties. IEEE Trans. Antennas Propag. 2012, 60, 1995–2003. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Chen, B.; Chen, H.-L.; Xiong, R. An unconditionally stable one-step leapfrog ADI-BOR-FDTD method. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 647–650. [Google Scholar] [CrossRef]
- Kong, Y.-D.; Chu, Q.-X.; Li, R. Efficient unconditionally stable one-step leapfrog ADI-FDTD method with low numerical dispersion. IET Microw. Antennas Propag. 2014, 8, 337–345. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, B.; Shi, L.; Gao, C.; Chen, B. A novel 3-D HIE-FDTD method with one-step leapfrog scheme. IEEE Trans. Microw. Theory Tech. 2014, 62, 1275–1283. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Yi, Y.; Chen, B.; Chen, H.-L.; Luo, K.; Xiong, R. One-step leapfrog LOD-BOR-FDTD algorithm with CPML implementation. Int. J. Antennas Propagat. 2016, 2016, 8402697. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, M.; Li, J.; Lin, Y. Numerical analysis of a leapfrog ADI-FDTD method for Maxwell’s equations in lossy media. Comput. Math. Appl. 2018, 76, 938–956. [Google Scholar] [CrossRef]
- Prokopidis, K.P.; Zografopoulos, D.C. One-step leapfrog ADI-FDTD method using the complex-conjugate pole-residue pairs dispersion model. IEEE Microw. Wirel. Compon. Lett. 2018, 12, 1068–1070. [Google Scholar] [CrossRef]
- Wang, X.-H.; Gao, J.-Y.; Chen, Z.; Teixeira, F.L. Unconditionally stable one-step leapfrog ADI-FDTD for dispersive media. IEEE Trans. Antennas Propag. 2019, 67, 2829–2834. [Google Scholar] [CrossRef]
- Xie, G.; Huang, Z.; Fang, M.; Wu, X. A unified 3-D ADI-FDTD algorithm with one-step leapfrog approach for modeling frequency-dependent dispersive media. Int. J. Numer. Model 2020, 33, e2666. [Google Scholar] [CrossRef] [Green Version]
- Zou, B.; Liu, S.; Zhang, L.; Ren, S. Efficient one-step leapfrog ADI-FDTD for far-field scattering calculation of lossy media. Microwave Opt. Technol. Lett. 2020, 62, 1876–1881. [Google Scholar] [CrossRef]
- Liu, S.; Zou, B.; Zhang, L.; Ren, S. A multi-GPU accelerated parallel domain decomposition one-step leapfrog ADI-FDTD. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 816–820. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Liu, R.; Wang, M.; Fan, C.; Zheng, H.; Li, E. Low-dispersion leapfrog WCS-FDTD with artificial anisotropy parameters and simulation of hollow dielectric resonator antenna array. IEEE Trans. Antennas Propag. 2021, 69, 5801–5811. [Google Scholar] [CrossRef]
- Gan, T.H.; Tan, E.L. Analysis of the divergence properties for the three-dimensional leapfrog ADI-FDTD method. IEEE Trans. Antennas Propag. 2012, 60, 5801–5808. [Google Scholar] [CrossRef]
- Smithe, D.N.; Cary, J.R.; Carlsson, J.A. Divergence preservation in the ADI algorithms for electromagnetics. J. Comput. Phys. 2009, 228, 7289–7299. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.L. A Leapfrog Scheme for Complying-Divergence Implicit Finite-Difference Time-Domain Method. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 853–857. [Google Scholar] [CrossRef]
- Tan, E.L. Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 7–9. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, E.L. A fundamental ADI-FDTD method with implicit update for magnetic fields in the second procedure. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 30 June–3 July 2015; pp. 6–7. [Google Scholar]
- Gan, T.H.; Tan, E.L. On the field leakage of the leapfrog ADI-FDTD method for nonpenetrable targets. Microwave Opt. Technol. Lett. 2014, 56, 1401–1405. [Google Scholar] [CrossRef]
- Heh, D.Y.; Tan, E.L. Unified efficient fundamental ADI-FDTD schemes for lossy media. Prog. Electromagn. Res. B 2011, 32, 217–242. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Tan, E.L. Stability and dispersion analysis for higher order 3-D ADI-FDTD method. IEEE Trans. Antennas Propag. 2005, 53, 3691–3696. [Google Scholar]
- Tan, E.L.; Heh, D.Y. ADI-FDTD method with fourth order accuracy in time. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 296–298. [Google Scholar]
- Kantartzis, N.V.; Zygiridis, T.T.; Tsiboukis, T.D. An unconditionally stable higher order ADI-FDTD technique for the dispersionless analysis of generalized 3-D EMC structures. IEEE Trans. Magn. 2004, 40, 1436–1439. [Google Scholar] [CrossRef]
- Fu, W.; Tan, E.L. A parameter optimized ADI-FDTD method based on the (2,4) stencil. IEEE Trans. Antennas Propag. 2006, 54, 1836–1842. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.-W.; Zhang, J. Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-difference time-domain method with artificial anisotropy. IEEE Trans. Microw. Theory Tech. 2009, 57, 2416–2428. [Google Scholar] [CrossRef]
- Zygiridis, T.T.; Kantartzis, N.V.; Tsiboukis, T.D. Development of ADI-FDTD methods with dispersion-relation-preserving features. In Proceedings of the Progress in Electromagnetics Research Symposium, Prague, Czech Republic, 6–9 July 2015; pp. 2209–2214. [Google Scholar]
- Zygiridis, T.T.; Kantartzis, N.V.; Antonopoulos, C.S.; Tsiboukis, T.D. Efficient integration of high-order stencils into the ADI-FDTD method. IEEE Trans. Magn. 2016, 52, 7201704. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, W.; Kim, H.; Choi, H. An improved split-step method in scaling function based MRTD. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 184–186. [Google Scholar] [CrossRef]
- Kong, Y.; Chu, Q. High-order split-step unconditionally-stable FDTD methods and numerical analysis. IEEE Trans. Antennas Propag. 2011, 59, 3280–3289. [Google Scholar] [CrossRef]
- Heh, D.Y.; Tan, E.L. Further reinterpretation of multi-stage implicit FDTD schemes. IEEE Trans. Antennas Propag. 2014, 62, 4407–4411. [Google Scholar] [CrossRef]
- Zygiridis, T.T.; Kantartzis, N.V.; Tsiboukis, T.D. Parallel LOD-FDTD method with error-balancing properties. IEEE Trans. Magn. 2015, 51, 7205804. [Google Scholar] [CrossRef]
- Zygiridis, T.T.; Kantartzis, N.V.; Tsiboukis, T.D. Four-stage split-step 2D FDTD method with error-cancellation features. ACES Expr. J. 2016, 1, 105–108. [Google Scholar]
- Saxena, A.K.; Srivastava, K.V. Higher order LOD-FDTD methods and their numerical dispersion properties. IEEE Trans. Antennas Propag. 2017, 65, 1480–1485. [Google Scholar] [CrossRef]
- Hosseini, K.; Atlasbaf, Z. Efficient three-step LOD-FDTD method in lossy saturated ferrites with arbitrary magnetization. IEEE Trans. Antennas Propag. 2018, 66, 1374–1383. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z.; Guo, Q.; Long, Y. An efficient parallel implicit solver for LOD-FDTD algorithm in cloud computing environment. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1209–1212. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, E.L. Interconnected multi-1-D FADI- and FLOD-FDTD methods for transmission lines with interjunctions. IEEE Trans. Microw. Theory Tech. 2017, 65, 684–692. [Google Scholar] [CrossRef]
- Tan, E.L.; Yang, Z. Non-uniform time-step FLOD-FDTD method for multiconductor transmission lines including lumped elements. IEEE Trans. Electromagn. Compat. 2017, 59, 1983–1992. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Yao, L.; Yin, W.-Y. A hybrid method based on leapfrog ADI-FDTD and FDTD for solving multiscale transmission line network. IEEE J. Multiscale Multiphys. Comput. Tech. 2020, 5, 273–280. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Yao, L.; Yin, W.-Y. EMI analysis of multiscale transmission line network using a hybrid FDTD method. IEEE Trans. Electromagn. Compat. 2021, 63, 1202–1211. [Google Scholar] [CrossRef]
- Tan, E.L.; Heh, D.Y. Stability analyses of nonuniform time-step LOD-FDTD methods for electromagnetic and thermal simulations. IEEE J. Multiscale Multiphys. Comput. Tech. 2017, 2, 183–193. [Google Scholar] [CrossRef]
- Tay, W.C.; Tan, E.L.; Heh, D.Y. Fundamental locally one-dimensional method for 3-D thermal simulation. IEICE Trans. Electron. 2014, E97-C, 636–644. [Google Scholar] [CrossRef]
- Tay, W.C.; Tan, E.L. Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation. Comput. Phys. Comm. 2014, 185, 1886–1892. [Google Scholar] [CrossRef]
Implicit FDTD Scheme | Leapfrog ADI FDTD | Leapfrog FADI FDTD | Leapfrog CDI FDTD | |
---|---|---|---|---|
Implicit update equations | (36) & (43), or (95)–(100) | (44) & (46), or (101)–(103) & (107)–(109) | (91) & (93), or (113)–(115) & (119)–(121) | |
Explicit update equations | – | (45) & (47), or (104)–(106) & (110)–(112) | (92) & (94), or (116)–(118) & (122)–(124) | |
Implicit | M/D | 24 | 12 | 0 |
update | A/S | 48 | 18 | 0 |
Explicit | M/D | 0 | 0 | 12 |
update | A/S | 0 | 6 | 24 |
Total | M/D | 24 | 12 | 12 |
A/S | 48 | 24 | 24 | |
M/D+A/S | 72 | 36 | 36 | |
Temporal accuracy | Second-order | Second-order | Second-order | |
Complying divergence | No, violating Gauss’s law | No, violating Gauss’s law | Yes, satisfying Gauss’s law |
Implicit FDTD Scheme | ADI FDTD | FADI FDTD Implicit E-E or E-H | LOD FDTD | FLOD-CD or CDI FDTD | |
---|---|---|---|---|---|
Implicit update equations | (6) & (8) | E-E: (16) & (19) E-H: (23) & (26) | (50) & (52) | (58) & (61) | |
Explicit update equations | (7) & (9) | E-E: (15), (17), (18) & (20) E-H: (22), (24), (25) & (27) | (51) & (53) | (59), (60), (62) & (63) | |
Implicit | M/D | 24 | 6 | 18 | 6 |
update | A/S | 48 | 12 | 36 | 12 |
Explicit | M/D | 12 | 6 | 6 | 6 |
update | A/S | 24 | 18 | 24 | 18 |
Total | M/D | 36 | 12 | 24 | 12 |
A/S | 72 | 30 | 60 | 30 | |
M/D+A/S | 108 | 42 | 84 | 42 | |
Temporal accuracy | Second-order | Second-order | First-order, (stable for NUTS) | Second-order with (64) and (65) | |
Complying divergence | No, violating Gauss’s law | No, violating Gauss’s law | No, violating Gauss’s law | Yes, satisfying Gauss’s law with (64) and (65) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, E.L. From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods. Axioms 2022, 11, 23. https://doi.org/10.3390/axioms11010023
Tan EL. From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods. Axioms. 2022; 11(1):23. https://doi.org/10.3390/axioms11010023
Chicago/Turabian StyleTan, Eng Leong. 2022. "From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods" Axioms 11, no. 1: 23. https://doi.org/10.3390/axioms11010023
APA StyleTan, E. L. (2022). From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods. Axioms, 11(1), 23. https://doi.org/10.3390/axioms11010023