Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach
Abstract
:1. Introduction
2. Homothetic Symmetry Equations
2.1. Four HVFs
2.2. Four KVFs
2.3. Seven KVFs
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: London, UK, 2004. [Google Scholar]
- Qadir, A.; Ziad, M. Classification of Static Cylindrically Symmetric Space-Times. Il. Nuov. Cim. B 1995, 110, 277–290. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Qadir, A. Symmetries of Static Spherically Symmetric Space-Times. J. Math. Phys. 1987, 28, 1019–1022. [Google Scholar] [CrossRef]
- Feroze, T.; Qadir, A.; Zaid, M. The Classification of Plane Symmetric Spacetimes by Isometries. J. Math. Phys. 2001, 42, 4947–4955. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Karim, M.; Al-Sheikh, D.N.; Zaman, F.D. Circularly Symmetric Static Metric in Three Dimensions and its Killing Symmetry. Int. J. Theor. Phys. 2008, 47, 2672–2678. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, T.; Bokhari, A.H.; Khan, G.A. Conformal Killing Vectors of Plane Symmetric Four Dimensional Lorentzian Manifolds. Eur. Phys. J. C 2015, 75, 523–531. [Google Scholar] [CrossRef]
- Kramer, D.; Carot, J. Conformal Symmetry of Perfect Fluids in General Relativity. J. Math. Phys. 1991, 32, 1857–1860. [Google Scholar] [CrossRef]
- Chrobok, T.; Borzeszkowski, H.H. Thermodinamical Equilibrium and Spacetime Geometry. Gen. Rel. Grav. 2006, 38, 397–415. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Quark Stars Admitting a One-parameter Group of Conformal Motions. Int. J. Mod. Phys. D 2004, 13, 149–156. [Google Scholar] [CrossRef]
- Moopanar, S.; Maharaj, S.D. Conformal Symmetries of Spherical Spacetimes. Int. J. Theor. Phys. 2010, 49, 1878–1885. [Google Scholar] [CrossRef]
- Maartens, R.; Maharaj, S.D.; Tupper, B.O.J. General Solution and Classification of Conformal Motions in Static Spherical Spacetimes. Class. Quant. Grav. 1995, 12, 2577–2586. [Google Scholar] [CrossRef]
- Hall, G.S.; Carot, J. Conformal Symmetries in Null Einstein-Maxwell Fields. Class. Quant. Grav. 1994, 11, 475–480. [Google Scholar] [CrossRef]
- Maartens, R.; Maharaj, S.D. Conformal Symmetries of pp-waves. Class. Quant. Grav. 1991, 8, 503–514. [Google Scholar] [CrossRef]
- Hussain, T.; Nasib, U.; Khan, F.; Farhan, M. An Efficient Rif Algorithm for the Classification of Kantowski-Sachs Spacetimes via Conformal Vector Fields. J. Kor. Phys. Soc. 2020, 76, 286–291. [Google Scholar] [CrossRef]
- Hussain, T.; Nasib, U.; Farhan, M.; Bokhari, A.H. A study of Energy Conditions in Kantowski-Sachs Spacetimes via Homothetic Vector Fields. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Hussain, T.; Khan, J.; Nasib, U. Proper Homothetic Vector Fields of Bianchi Type I Spacetimes via Rif Tree Approach. Resul. Phys. 2021, 25, 104299. [Google Scholar] [CrossRef]
- Shabbir, G.; Ramzan, M. Classification of Cylindrically Symmetric Static Spacetimes According to Their Proper Homothetic vector Fields. Appl. Sci. 2007, 9, 148–154. [Google Scholar]
- Reid, G.J.; Wittkope, A.D.; Boulton, A. Reduction of Systems of Nonlinear Partial Differential Equations to Simplified Involutive Forms. Euro. J. Appl. Math. 1996, 7, 635–666. [Google Scholar] [CrossRef]
No. | Metric | Proper HVF | |
---|---|---|---|
4a. | |||
(Branch 1) | |||
4b. | |||
(Branch 1) | |||
4c. | |||
(Branch 1) | |||
4d. | |||
(Branch 1) | |||
4e. | |||
(Branch 5) | |||
4f. | |||
(Branch 5) | |||
4g. | |||
(Branch 6) | |||
4h. | |||
(Branch 10) | |||
4i. | |||
(Branch 10) | |||
4j. | |||
(Branch 15) | |||
4k. | |||
(Branch 15) | |||
4l. | |||
(Branch 16) |
No. | Metric | Vector Field Components | Additional KVFs |
---|---|---|---|
4(i). | |||
(Branch 4) | |||
where | |||
4(ii). | |||
(Branch 8) | |||
where | |||
4(iii). | |||
(Branch 13) | |||
where | |||
4(iv). | |||
(Branch 19) | |||
where |
No. | Metric | Vector Field Components | Additional KVFs |
---|---|---|---|
7a. | |||
(Branch 9) | |||
, | |||
where | |||
No. | Metric | Vector Field Components | Additional KVFs |
---|---|---|---|
7b. | |||
(Branch 14) | |||
, | |||
where | |||
No. | Metric | Vector Field Components | Additional KVFs |
---|---|---|---|
7c. | |||
(Branch 20) | |||
, | |||
where | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, J.; Hussain, T.; Santina, D.; Mlaiki, N. Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms 2022, 11, 506. https://doi.org/10.3390/axioms11100506
Khan J, Hussain T, Santina D, Mlaiki N. Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms. 2022; 11(10):506. https://doi.org/10.3390/axioms11100506
Chicago/Turabian StyleKhan, Jamshed, Tahir Hussain, Dania Santina, and Nabil Mlaiki. 2022. "Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach" Axioms 11, no. 10: 506. https://doi.org/10.3390/axioms11100506
APA StyleKhan, J., Hussain, T., Santina, D., & Mlaiki, N. (2022). Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms, 11(10), 506. https://doi.org/10.3390/axioms11100506