Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping
Abstract
:1. Introduction and Tools
2. Main Results
2.1. Strategies
2.2. Low Regular Data
2.2.1. Low Dimension
r | Regularity σ1 | Admissible range for ς |
r = 1 | ||
r = 2 | ||
2.2.2. Higher Dimension
2.3. Data from Sobolev Spaces with Suitable Regularity
2.4. Large Regular Data
3. Philosophy of Our Approach and Proofs
3.1. Proof of Theorem 1
3.2. Proof of Theorem 2
- For we haveSimilarly to (33) and under the same conditions described in the theorem we getUsing the last estimate we obtainHence
- For we haveUsing (46) we getHence
3.3. Proof of Theorem 3
3.4. Proof of Theorem 4
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Caputo, M.; Fabrizio, M.A. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering; Elsevier: New York, NY, USA, 1999; Volume 198. [Google Scholar]
- D’Abbicco, M. The threshold of effective damping for semilinear wave equations. Math. Meth. Appl. Sci. 2015, 38, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, T.; Dickstein, F.; Weissler, F.B. An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 2008, 68, 862–874. [Google Scholar] [CrossRef]
- Lai, N.A.; Zhou, Y. An elementary proof of Strauss conjecture. J. Funct. Anal. 2014, 267, 1364–1381. [Google Scholar] [CrossRef]
- Wakasa, K.; Yordanov, B. Blow-up of solutions to critical semilinear wave equations with variable coefficients. J. Differ. Equ. 2019, 266, 5360–5376. [Google Scholar] [CrossRef] [Green Version]
- Fino, A.Z.; Kirane, M. Qualitative properties of solutions to a nonlocal evolution system. Math. Methods Appl. Sci. 2011, 34, 1125–1143. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Tan, Z. Blow-up of solutions for a time-space fractional evolution system. Acta Math. Sin.-Engl. Ser. 2013, 29, 1067–1074. [Google Scholar] [CrossRef]
- Mezadek, M.K.; Mezadek, M.K.; Reissig, M. Semilinear wave models with friction and viscoelastic damping. Math. Meth. Appl. Sci. 2020, 47, 3117–3147. [Google Scholar]
- Chen, W.; D’Abbicco, M.; Girardi, G. Global small data solutions for semilinear waves with two dissipative terms. Ann. Mat. 2022, 201, 529–560. [Google Scholar] [CrossRef]
- Nakao, M.; Ono, K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations. Math. Z. 1993, 214, 325–342. [Google Scholar] [CrossRef]
- Todorova, M.; Yordanov, B. Critical exponent for a nonlinear wave equation with damping. J. Diff. Eq. 2001, 174, 464–489. [Google Scholar] [CrossRef]
- Ikehata, R.; Miyaoka, Y.; Nakatake, T. Decay estimates of solutions for dissipative wave equations in with lower power nonlinearities. J. Math. Soc. Jpn. 2004, 56, 365–373. [Google Scholar] [CrossRef]
- Ikehata, R.; Ohta, M. Critical exponents for semilinear dissipative wave equations in . J. Math. Anal. Appl. 2002, 269, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, R.; Tanizawa, K. Global existence of solutions for semilinear damped wave equations in with noncompactly supported initial data. Nonlinear Anal. 2005, 61, 1189–1208. [Google Scholar] [CrossRef]
- Shibata, Y. On the rate of decay of solutions to linear viscoelastic equation. Math. Meth. Appl. Sci. 2000, 23, 203–226. [Google Scholar] [CrossRef]
- Ikehata, R. Asymptotic profiles for wave equations with strong damping. J. Diff. Equ. 2014, 257, 2159–2177. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Reissig, M. Semilinear structural damped waves. Math. Methods Appl. Sci. 2014, 37, 1570–1592. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, R.; Sawada, A. Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms. Asymptot Anal. 2016, 98, 59–77. [Google Scholar] [CrossRef]
- D’Abbicco, M. L1-L1 estimates for a doubly dissipative semilinear wave equation. Nonlinear Differ. Equ. Appl. (NoDEA) 2017, 24, 1–23. [Google Scholar]
- Ikehata, R.; Takeda, H. Exponent for nonlinear wave equations with frictional and viscoelastic damping terms. Nonlinear Anal. 2017, 148, 228–253. [Google Scholar] [CrossRef]
- Palmieri, A.; Reissig, M. Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation II. Math. Nachr. 2018, 291, 1859–1892. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Girardi, G. A structurally damped σ-evolution equation with nonlinear memory. Math. Meth. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Ebert, M.R.; Lucente, S. Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Math. Meth. Appl. Sci. 2017, 40, 6480. [Google Scholar] [CrossRef]
- Christ, F.; Weinstein, M. Dispersion of Small-Amplitude Solutions of the Generalized Korteweg-de Vries Equation. J. Funct. Anal. 1991, 100, 87–109. [Google Scholar] [CrossRef] [Green Version]
- Grafakos, L. Classical and Modern Fourier Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Grafakos, L.; Oh, S. The Kato Ponce inequality. Commun. Partial. Differ. Equ. 2014, 39, 1128–1157. [Google Scholar] [CrossRef]
- Gulisashvili, A.; Kon, M. Exact smoothing properties of Schrndinger semigroups. Am. J. Math. 1996, 118, 1215–1248. [Google Scholar]
- Hajaiej, H.; Molinet, L.; Ozawa, T.; Wang, B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. In Harmonic Analysis and Nonlinear Partial Differential Equations B26; 2011; pp. 159–175. Available online: https://arxiv.org/pdf/1004.4287v2.pdf (accessed on 30 August 2022).
- Kato, T.; Ponce, G. Well-posedness and scattering results for the generalized Kortewegde-Vries equation via the contraction principle. Commun. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar]
- Kenig, C.E.; Ponce, G.; Vega, L. Commutator estimates and the Euler and Navier Stokes equations. Commun. Pure Appl. Math. 1988, 41, 891–907. [Google Scholar]
- Djaouti, A.M. Semilinear Systems of Weakly Coupled Damped Waves. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Djaouti, A.; Latif, M.A. Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping. Axioms 2022, 11, 524. https://doi.org/10.3390/axioms11100524
Mohammed Djaouti A, Latif MA. Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping. Axioms. 2022; 11(10):524. https://doi.org/10.3390/axioms11100524
Chicago/Turabian StyleMohammed Djaouti, Abdelhamid, and Muhammad Amer Latif. 2022. "Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping" Axioms 11, no. 10: 524. https://doi.org/10.3390/axioms11100524
APA StyleMohammed Djaouti, A., & Latif, M. A. (2022). Fractional Nonlinearity for the Wave Equation with Friction and Viscoelastic Damping. Axioms, 11(10), 524. https://doi.org/10.3390/axioms11100524