Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus
Abstract
:1. Introduction
2. Preliminaries and Basic Lemmas
- (1)
- (2)
- (3)
3. Main Results
Multidimensional Inequalities on Time Scales
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Kaijser, S.; Persson, L.E.; öberg, A. On Carleman and Knopp’s inequalities. J. Approx. Theory 2002, 117, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Cižmešija, A.; Pečarić, J.; Persson, L.E. On strengthened Hardy and Pólya-Knopp’s inequalities. J. Approx. Theory 2003, 125, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Rezk, H.M.; Saied, A.I.; AlNemer, Ġ.; Zakarya, M. On Hardy–Knopp type inequalities with kernels via time scale calculus. J. Math. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M. Islam Abohela and Dumitru Baleanu, Refinement Multidimensional Dynamic Inequalities with General Kernels and Measures. J. Inequalities Appl. 2019, 306, 1–16. [Google Scholar]
- Zakarya, M.; Nemer, G.A.L.; Saied, A.I.; Butush, R.; Rezk, O.B.H.M. Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus. Symmetry 2022, 14, 1512. [Google Scholar] [CrossRef]
- Zakarya, M.; Saied, A.I.; Nemer, G.A.L.; Rezk, H.M. A study on some new reverse Hilbert-type inequalities and its generalizations on time scales. J. Math. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, Ṁ.A.; Noor, K.I.; Safdar, Ḟ.; Chu, Y.M. Hermite-Hadamard type inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef] [Green Version]
- Özkan, U.M.; Yildirim, H. Hardy-Knopp type inequalities on time scales. Dyn. Syst. Appl. 2008, 17, 477–486. [Google Scholar]
- Özkan, U.M.; Yildirim, H. Time scale Hardy-Knopp type integral inequalities. Commun. Math. 2009, 6, 36–41. [Google Scholar]
- Ferreira, R.A.; Ammi, M.R.S.; Torres, D.F. Diamond-alpha integral inequalities on time scales. arXiv 2008, arXiv:0805.0242. [Google Scholar]
- Bibi, R.; Bohner, M.; Pećarixcx, J.; Varošanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequal. 2013, 7, 299–312. [Google Scholar] [CrossRef]
- Ammi, M.R.S.; Ferreira, R.A.; Torres, D. Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl. 2008, 2008, 1–13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saied, A.I.; ALNemer, G.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus. Axioms 2022, 11, 662. https://doi.org/10.3390/axioms11120662
Saied AI, ALNemer G, Zakarya M, Cesarano C, Rezk HM. Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus. Axioms. 2022; 11(12):662. https://doi.org/10.3390/axioms11120662
Chicago/Turabian StyleSaied, A. I., Ghada ALNemer, Mohammed Zakarya, Clemente Cesarano, and Haytham M. Rezk. 2022. "Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus" Axioms 11, no. 12: 662. https://doi.org/10.3390/axioms11120662
APA StyleSaied, A. I., ALNemer, G., Zakarya, M., Cesarano, C., & Rezk, H. M. (2022). Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus. Axioms, 11(12), 662. https://doi.org/10.3390/axioms11120662