Second-Order Multiparameter Problems Containing Complex Potentials
Abstract
:1. Introduction
- A limit-point case but only one square-integrable solution,
- A limit-point case but two square-integrable solutions,
- A limit-circle case and two square-integrable solutions.
2. Single Second-Order Equation
3. Nested Circles
- (I)
- (II)
- (III)
4. Independence of the Theory from the Parameters
5. Several Second-Order Equations
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, F.V. Multiparameter spectral theory. Bull. Am. Math. Soc. 1968, 74, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Bora, N. Applications of multiparameter eigen value problems. Nepal J. Sci. Technol. 2021, 19, 75–82. [Google Scholar] [CrossRef]
- Seyranian, A.P.; Mailybaev, A.A. Multiparameter Stability Theory with Mechanical Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2003. [Google Scholar]
- Valovik, D.V.; Kurseeva, V.Y. Multiparameter eigenvalue problems and their applications in electrodynamics. J. Math. Sci. 2022, 267, 677–697. [Google Scholar] [CrossRef]
- Almamedov, M.S.; Aslanov, A.A.; Isaev, G.A. On the theory of two-parameter spectral problems. Soviet Math. Dokl. 1985, 5, 1033–1035. [Google Scholar]
- Atkinson, F.V. Multiparameter Eigenvalue Problems, Vol. I: Matrices and Compact Operators; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Binding, P. Multiparameter definiteness conditions. Proc. Roy. Soc. Edinb. Sect. A 1981, 89, 319–332. [Google Scholar] [CrossRef]
- Binding, P.; Browne, P.J. Eigencurves for two-parameter self-adjoint ordinary differential equations of even order. J. Differ. Eq. 1989, 79, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Binding, P.; Seddighi, K. Elliptic multiparameter eigenvalue problems. Proc. Edinb. Math. Soc. 1987, 30, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, T.; Kosir, T.; Plestenjak, B. Right-definite multiparameter Sturm-Liouville problems with eigenparameter-dependent boundary conditions. Proc. Edinb. Math. Soc. 2002, 45, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Browne, P.J. A multi-parameter eigenvalue problem. J. Math. Anal. Appl. 1972, 38, 553–568. [Google Scholar] [CrossRef] [Green Version]
- Browne, P.J. Multi-parameter spectral theory. Indiana Univ. Math. J. 1974, 24, 249–257. [Google Scholar] [CrossRef]
- Browne, P.J. Abstract multiparameter theory I. J. Math. Anal. Appl. 1977, 60, 259–273. [Google Scholar] [CrossRef]
- Browne, P.J. Abstract multiparameter theory II. J. Math. Anal. Appl. 1977, 60, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Browne, P.J.; Sleeman, B.D. Regular multiparameter eigenvalue problems with several parameters in the boundary conditions. J. Math. Anal. Appl. 1979, 72, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Guseinov, G.S.h. On the spectral theory of multiparameter difference equations of second order. Math. USSR Izvestiya 1988, 31, 95–120. [Google Scholar] [CrossRef]
- Isaev, G.A. Expansion in the eigenfunctions of selfadjoint singular multiparameter differential operators. Soviet Math. Dokl. 1981, 260, 786–790. [Google Scholar]
- Isaev, G.A. On singular multiparameter differential operators: Expansion theorems. Math. USSR Sbornik. 1988, 59, 53–73. [Google Scholar] [CrossRef]
- McGhee, D.F.; Roach, G.F. The spectrum of multiparameter problems in Hilbert space. Proc. Roy. Soc. Edinb. 1981, 91A, 31–42. [Google Scholar] [CrossRef]
- McGhee, D.F. Multiparameter problems and joint spectra. Proc. Roy. Soc. Edinb. 1982, 93A, 129–135. [Google Scholar] [CrossRef]
- Sleeman, B.D. Multi-parameter eigenvalue problems in ordinary differential equations. Bull. Inst. Poli. Iasi 1971, 17, 51–60. [Google Scholar]
- Sleeman, B.D. Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles. J. London Math. Soc. 1973, 6, 705–712. [Google Scholar] [CrossRef]
- Sleeman, B.D. Multiparameter spectral theory and separation of variables. J. Phys. A Math. Theor. 2008, 41, 1–20. [Google Scholar] [CrossRef]
- Atkinson, F.V.; Mingareli, A.B. Multiparameter Eigenvalue Problems: Sturm-Liouville Theory; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Mirzoev, K.A. Multi-parameter Sturm-Liouville problem: Limit point and limit circle. Russ. Math. Surv. 2007, 62, 1218–1219. [Google Scholar] [CrossRef]
- Mirzoev, K.A. The singular multiparameter Sturm-Liouvile problem. Dokl. Math. 2008, 78, 24–28. [Google Scholar] [CrossRef]
- Rynne, B.P. Multiparameter spectral theory of singular differential operators. Proc. Edinb. Math. Soc. 1988, 31, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Sleeman, B.D. Singular linear differential operators with many parameters. Proc. Roy. Soc. Edinb. 1973, 71A, 199–232. [Google Scholar] [CrossRef]
- Uğurlu, E. Singular multiparameter dynamic equations with distributional potentials on time scales. Quaes. Math. 2017, 40, 1023–1040. [Google Scholar] [CrossRef]
- Uğurlu, E. Singular Hamiltonian system with several spectral parameters. J. Math. Anal. Appl. 2018, 461, 1241–1259. [Google Scholar] [CrossRef]
- Weyl, H. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 1910, 68, 220–269. [Google Scholar] [CrossRef]
- Uğurlu, E. A new insight to the Hamiltonian systems with a finite number of spectral parameters. Quaest. Math. 2022. [Google Scholar] [CrossRef]
- Uğurlu, E.; Baleanu, D.; Taş, K. On square integrable solutions of a fractional differential equation. Appl. Math. Comput. 2018, 337, 153–157. [Google Scholar]
- Sims, A.R. Secondary conditions for linear differential operators of the second order. J. Math. Mec. 1957, 6, 247–285. [Google Scholar] [CrossRef]
- Uğurlu, E.; Taş, K.; Baleanu, D. Fractional differential equation with a complex potential. Filomat 2020, 34, 1731–1737. [Google Scholar] [CrossRef]
- Gunning, R.; Rossi, H. Analytic Functions of Several Complex Variables; Prentice-Hall: London, UK, 1965. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdal, I.; Uğurlu, E. Second-Order Multiparameter Problems Containing Complex Potentials. Axioms 2022, 11, 706. https://doi.org/10.3390/axioms11120706
Erdal I, Uğurlu E. Second-Order Multiparameter Problems Containing Complex Potentials. Axioms. 2022; 11(12):706. https://doi.org/10.3390/axioms11120706
Chicago/Turabian StyleErdal, Ibrahim, and Ekin Uğurlu. 2022. "Second-Order Multiparameter Problems Containing Complex Potentials" Axioms 11, no. 12: 706. https://doi.org/10.3390/axioms11120706
APA StyleErdal, I., & Uğurlu, E. (2022). Second-Order Multiparameter Problems Containing Complex Potentials. Axioms, 11(12), 706. https://doi.org/10.3390/axioms11120706