Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces
Abstract
:1. Introduction
2. Preliminaries
2.1. Polynomials
2.2. Algebraic Combinations and Algebraic Basis
2.3. Symmetric Polynomials on the Space
3. The Main Result
- (i)
- there existssuch that, for everythere existssuch thatand
- (ii)
- there exists a constantsuch that ifthen
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weyl, H. The Classical Groups: Their Invariants and Representations; Princeton University Press: Princenton, NJ, USA, 1973. [Google Scholar]
- van der Waerden, B.L. Modern Algebra; Ungar Publishing: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; University Lecture Series, 12; AMS: Providence, RI, USA, 1998. [Google Scholar]
- Nemirovskii, A.S.; Semenov, S.M. On Polynomial Approximation of Functions on Hilbert Space. Math. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Volume I, Sequence Spaces. Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Volume II, Function Spaces; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞). Math. Nachrichten 2018, 291, 1712–1726. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; García, D.; Maestre, M. Algebras of symmetric holomorphic functions of several complex variables. Rev. Matemática Complut. 2018, 31, 651–672. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; Maestre, M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28, 393–404. [Google Scholar] [CrossRef]
- Choi, Y.S.; Falcó, J.; García, D.; Jung, M.; Maestre, M. Group invariant separating polynomials on a Banach space. Publ. Matemàtiques 2022, 66, 207–233. [Google Scholar]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- García, D.; Maestre, M.; Zalduendo, I. The spectra of algebras of group-symmetric functions. Proc. Edinb. Math. Soc. 2019, 62, 609–623. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. The algebra of symmetric analytic functions on L∞. Proc. R. Soc. Edinb. Sect. A 2017, 147, 743–761. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on L∞. Rev. R. Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2020, 114, 56. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric polynomials on (Lp)n. Eur. J. Math. 2020, 6, 164–178. [Google Scholar] [CrossRef]
- Vasylyshyn, T.V. Symmetric polynomials on the Cartesian power of Lp on the semi-axis. Mat. Stud. 2018, 50, 93–104. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power p∈[1,+∞) functions. Carpathian Math. Publ. 2021, 13, 340–351. [Google Scholar] [CrossRef]
- Chernega, I.; Holubchak, O.; Novosad, Z.; Zagorodnyuk, A. Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2020, 6, 153–163. [Google Scholar] [CrossRef]
- Halushchak, S.I. Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials. Carpatian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Halushchak, S.I. Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces. Mat. Stud. 2021, 56, 106–112. [Google Scholar] [CrossRef]
- Chernega, I.; Zagorodnyuk, A. Unbounded symmetric analytic functions on ℓ1. Math. Scand. 2018, 122, 84–90. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Entire analytic functions of unbounded type on Banach spaces and their lineability. Axioms 2021, 10, 150. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Algebras of entire functions containing functions of unbounded type on a Banach space. Carpathian Math. Publ. 2021, 13, 426–432. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Classes of entire analytic functions of unbounded type on Banach spaces. Axioms 2020, 9, 133. [Google Scholar] [CrossRef]
- Burtnyak, I.; Chernega, I.; Hladkyi, V.; Labachuk, O.; Novosad, Z. Application of symmetric analytic functions to spectra of linear operators. Carpathian Math. Publ. 2021, 13, 701–710. [Google Scholar] [CrossRef]
- Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebras of symmetric holomorphic functions on ℓp. Bull. Lond. Math. Soc. 2003, 35, 55–64. [Google Scholar] [CrossRef]
- Chernega, I.V. A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ1. J. Math. Sci. 2016, 212, 38–45. [Google Scholar] [CrossRef]
- Chernega, I.V.; Fushtei, V.I.; Zagorodnyuk, A.V. Power operations and differentiations associated with supersymmetric polynomials on a Banach space. Carpathian Math. Publ. 2020, 12, 360–367. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut. 2014, 27, 575–585. [Google Scholar] [CrossRef]
- Chernega, I.V.; Zagorodnyuk, A.V. Note on bases in algebras of analytic functions on Banach spaces. Carpathian Math. Publ. 2019, 11, 42–47. [Google Scholar] [CrossRef]
- Jawad, F.; Karpenko, H.; Zagorodnyuk, A. Algebras generated by special symmetric polynomials on ℓ1. Carpathian Math. Publ. 2019, 11, 335–344. [Google Scholar] [CrossRef]
- Jawad, F.; Zagorodnyuk, A. Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- Holubchak, O.M.; Zagorodnyuk, A.V. Topological and algebraic structures on a set of multisets. J. Math. Sci. 2021, 258, 446–454. [Google Scholar] [CrossRef]
- Novosad, Z.; Zagorodnyuk, A. Analytic automorphisms and transitivity of analytic mappings. Mathematics 2020, 8, 2179. [Google Scholar] [CrossRef]
- Holubchak, O.M. Hilbert space of symmetric functions on ℓ1. J. Math. Sci. 2012, 185, 809–814. [Google Scholar] [CrossRef]
- Novosad, Z.; Zagorodnyuk, A. Polynomial automorphisms and hypercyclic operators on spaces of analytic functions. Arch. Math. 2007, 89, 157–166. [Google Scholar] [CrossRef]
- Martsinkiv, M.; Zagorodnyuk, A. Approximations of symmetric functions on Banach spaces with symmetric bases. Symmetry 2021, 13, 2318. [Google Scholar] [CrossRef]
- Aron, R.; Gonzalo, R.; Zagorodnyuk, A. Zeros of real polynomials. Linearand Multilinear Algebra 2000, 48, 107–115. [Google Scholar] [CrossRef]
- Chernega, I. Symmetric polynomials and holomorphic functions on infinite dimensional spaces. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2015, 2, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Jawad, F. Note on separately symmetric polynomials on the Cartesian product of ℓ1. Mat. Stud. 2018, 50, 204–210. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Algebraic basis of the algebra of block-symmetric polynomials on ℓ1⊗ℓ∞. Carpathian Math. Publ. 2019, 11, 89–95. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vasylyshyn, T.; Zagorodnyuk, A. On algebraic basis of the algebra of symmetric polynomials on ℓp(). J. Funct. Spaces 2017, 2017, 4947925. [Google Scholar] [CrossRef] [Green Version]
- Vasylyshyn, T. Symmetric functions on spaces ℓp() and ℓp(). Carpathian Math. Publ. 2020, 12, 5–16. [Google Scholar] [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Dineen, S. Complex Analysis in Locally Convex Spaces; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1981. [Google Scholar]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces, Monographs in Mathematics; Springer: New York, NY, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandura, A.; Kravtsiv, V.; Vasylyshyn, T. Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces. Axioms 2022, 11, 41. https://doi.org/10.3390/axioms11020041
Bandura A, Kravtsiv V, Vasylyshyn T. Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces. Axioms. 2022; 11(2):41. https://doi.org/10.3390/axioms11020041
Chicago/Turabian StyleBandura, Andriy, Viktoriia Kravtsiv, and Taras Vasylyshyn. 2022. "Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces" Axioms 11, no. 2: 41. https://doi.org/10.3390/axioms11020041
APA StyleBandura, A., Kravtsiv, V., & Vasylyshyn, T. (2022). Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces. Axioms, 11(2), 41. https://doi.org/10.3390/axioms11020041