Some Korovkin-Type Approximation Theorems Associated with a Certain Deferred Weighted Statistical Riemann-Integrable Sequence of Functions
Abstract
:1. Introduction and Motivation
2. Deferred Weighted Statistical Riemann Integrability
3. Korovkin-Type Approximation Theorems via the -Mean
4. Concluding Remarks and Directions for Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74. [Google Scholar]
- Akdag, S. Weighted equi-statistical convergence of the Korovkin-type approximation theorems. Results Math. 2017, 72, 1073–1085. [Google Scholar] [CrossRef]
- Balcerzak, M.; Dems, K.; Komisarski, A. Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl. 2007, 328, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Braha, N.L.; Loku, V.; Srivastava, H.M. Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems. Appl. Math. Comput. 2015, 266, 675–686. [Google Scholar] [CrossRef]
- Et, M.; Baliarsingh, P.; Küçxuxkaslan, H.S.K.M. On μ-deferred statistical convergence and strongly deferred summable functions. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2021, 115, 1–14. [Google Scholar] [CrossRef]
- Ghosal, S.; Mandal, S. Rough weighted I-αβ-statistical convergence in locally solid Riesz spaces. J. Math. Anal. Appl. 2021, 506, 125681. [Google Scholar] [CrossRef]
- Ghosal, S.; Banerjee, M. Rough weighted statistical convergence on locally solid Riesz spaces. Positivity 2021, 25, 1789–1804. [Google Scholar] [CrossRef]
- Guessab, A.; Schmeisser, G. Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 2003, 73, 1365–1384. [Google Scholar] [CrossRef]
- Alotaibi, A. Generalized weighted statistical convergence for double sequences of fuzzy numbers and associated Korovkin-type approximation theorem. J. Funct. Spaces 2020, 2020, 9298650. [Google Scholar] [CrossRef]
- Özger, F. Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two variables. Numer. Funct. Anal. Optim. 2020, 41, 1990–2006. [Google Scholar] [CrossRef]
- Demirci, K.; Dirik, F.; Yıldız, S. Deferred Nörlund statistical relative uniform convergence and Korovkin-type approximation theorem. Commun. Fac. Sci. Univ. Ank. Ser. A Math. Statist. 2021, 70, 279–289. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Hazarika, B. On strongly almost generalized difference lacunary ideal convergent sequences of fuzzy numbers. J. Comput. Anal. Appl. 2017, 23, 925–936. [Google Scholar]
- Móricz, F. Tauberian conditions under which statistical convergence follows from statistical summability (C,1). J. Math. Anal. Appl. 2002, 275, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.N.; Acu, A.-M.; Chauhan, R.; Garg, T. Approximation of Bögel continuous functions and deferred weighted A-statistical convergence by Bernstein-Kantorovich type operators on a triangle. J. Math. Inequal. 2021, 15, 1695–1711. [Google Scholar] [CrossRef]
- Saini, K.; Raj, K.; Mursaleen, M. Deferred Cesàro and deferred Euler equi-statistical convergence and its applications to Korovkin-type approximation theorem. Internat. J. Gen. Syst. 2021, 50, 567–579. [Google Scholar] [CrossRef]
- Söylemez, D. A Korovkin type approximation theorem for Balázs type Bleimann, Butzer and Hahn operators via power series statistical convergence. Math. Slovaca 2022, 72, 153–164. [Google Scholar] [CrossRef]
- Turan, C.; Duman, O. Fundamental properties of statistical convergence and lacunary statistical convergence on time scales. Filomat 2017, 31, 4455–4467. [Google Scholar] [CrossRef]
- Altomare, F. Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 2010, 5, 92–164. [Google Scholar]
- Braha, N.L. Some weighted equi-statistical convergence and Korovkin-type theorem. Results Math. 2016, 70, 433–446. [Google Scholar] [CrossRef]
- Braha, N.L.; Srivastava, H.M.; Et, M. Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems. J. Appl. Math. Comput. 2021, 65, 429–450. [Google Scholar] [CrossRef]
- Guessab, A.; Schmeisser, G. Two Korovkin-type theorems in multivariate approximation. Banach J. Math. Anal. 2008, 2, 121–128. [Google Scholar] [CrossRef]
- Jena, B.B.; Paikray, S.K.; Dutta, H. On various new concepts of statistical convergence for sequences of random variables via deferred Cesàro mean. J. Math. Anal. Appl. 2020, 487, 123950. [Google Scholar] [CrossRef]
- Karakuş, S.; Demirci, K.; Duman, O. Equi-statistical convergence of positive linear operators. J. Math. Anal. Appl. 2008, 339, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Çınar, S.; Yıldız, S.; Demirci, K. Korovkin type approximation via triangular A-statistical convergence on an infinite interval. Turk. J. Math. 2021, 45, 929–942. [Google Scholar] [CrossRef]
- Parida, P.; Paikray, S.K.; Jena, B.B. Generalized deferred Cesàro equi-statistical convergence and analogous approximation theorems. Proyecciones J. Math. 2020, 39, 307–331. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2020, 114, 1–14. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Statistical deferred Nörlund summability and Korovkin-type approximation theorem. Mathematics 2020, 8, 636. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A. Operational representations for the Laguerre and other polynomials. Duke Math. J. 1964, 31, 127–142. [Google Scholar] [CrossRef]
- Viskov, O.V.; Srivastava, H.M. New approaches to certain identities involving differential operators. J. Math. Anal. Appl. 1994, 186, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Korovkin, P.P. Convergence of linear positive operators in the spaces of continuous functions. Dokl. Akad. Nauk. SSSR (New Ser.) 1953, 90, 961–964. (In Russian) [Google Scholar]
- Jena, B.B.; Paikray, S.K.; Dutta, H. A new approach to Korovkin-type approximation via deferred Cesàro statistical measurable convergence. Chaos Solitons Fractals 2021, 148, 111016. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Statistical Riemann and Lebesgue integrable sequence of functions with Korovkin-type approximation theorems. Axioms 2021, 10, 229. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Some Korovkin-Type Approximation Theorems Associated with a Certain Deferred Weighted Statistical Riemann-Integrable Sequence of Functions. Axioms 2022, 11, 128. https://doi.org/10.3390/axioms11030128
Srivastava HM, Jena BB, Paikray SK. Some Korovkin-Type Approximation Theorems Associated with a Certain Deferred Weighted Statistical Riemann-Integrable Sequence of Functions. Axioms. 2022; 11(3):128. https://doi.org/10.3390/axioms11030128
Chicago/Turabian StyleSrivastava, Hari Mohan, Bidu Bhusan Jena, and Susanta Kumar Paikray. 2022. "Some Korovkin-Type Approximation Theorems Associated with a Certain Deferred Weighted Statistical Riemann-Integrable Sequence of Functions" Axioms 11, no. 3: 128. https://doi.org/10.3390/axioms11030128
APA StyleSrivastava, H. M., Jena, B. B., & Paikray, S. K. (2022). Some Korovkin-Type Approximation Theorems Associated with a Certain Deferred Weighted Statistical Riemann-Integrable Sequence of Functions. Axioms, 11(3), 128. https://doi.org/10.3390/axioms11030128