Exploring the Limits of Euler–Bernoulli Theory in Micromechanics
Abstract
:1. Introduction
2. Materials, Methods, and Mathematical Background
2.1. Materials
2.2. Methods
- The Raman laser beam was set up under a microscope to focus on the AFM silicon microbeam.
- An AFM experimental procedure on a clean glass substrate was started to gradually, and linearly, bend the AFM cantilever from z = 0 to z = 3.9259 × 10−6 m maximum deflection, as shown in Table 1.
- 3.
- In each z-height of the tip of the silicon beam, a full scanning of the microbeam surface was performed to gain Raman data.
- 4.
- Raman shift data for the silicon beam was analyzed and the correlated linear strain was calculated via known Raman equations.
- 5.
- The theoretical linear strain for the microbeam surface was calculated through the Euler—Bernoulli theory.
- 6.
- The linear strain calculations via Raman and Euler–Bernoulli were compared in graphs, as shown below in this paper.
2.3. Determination of Material Properties at the Micro-Scale
2.4. Theory of Bending for Small Deformations
3. Results and Discussion
3.1. AFM and Raman Spectroscopy
3.2. Comparison of Experimental Values with Theoretical Euler–Bernoulli Results
4. Conclusions
- The experimental data show that, in the area of the maximum bending moment, the Raman response increases linearly.
- As shown in the strain–beam position graph, the maximum strain values appear in the fixed end area, whereas they are reduced to zero when the free end of the beam is approached.
- The experimentally determined axial strain values for the silicon microbeam are almost identical to the theoretical ones provided by the Euler–Bernoulli approximation.
- The combination of Raman spectroscopy with atomic force microscopy provides a useful means for the study of nanomechanical systems.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastav, S.; Bhardwaj, P. Summit “Fabrication, sensing & application of MEMS/NEMS technology”. Int. J. Comput. Eng. Manag. 2011, 12, 57–60. [Google Scholar]
- Lyshevski, S.E. Mems and Nems: Systems, Devices, and Structures, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K.; Calabria-Holley, J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Constr. Build. Mater. 2015, 74, 219–234. [Google Scholar] [CrossRef]
- De Wolf, I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 1996, 11, 139–154. [Google Scholar] [CrossRef]
- De Wolf, I.; Senez, V.; Balboni, R.; Armigliato, A.; Frabboni, S.; Cedola, A.; Lagomarsino, S. Techniques for mechanical strain analysis in sub-micrometer structures: TEM/CBED, micro-Raman spectroscopy, X-ray micro-diffraction and modeling. Microelectron. Eng. 2003, 70, 425–435. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Vayghan, A.G.; Bolhasani, M. Mechanical and Microstructural Properties of Cement Paste Incorporating Nano Silica Particles with Various Specific Surface Areas. Key Eng. Mater. 2011, 478, 19–24. [Google Scholar] [CrossRef]
- Veerapandian, M.; Yun, K. Study of Atomic Force Microscopy in Pharmaceutical and Biopharmaceutical Interactions-A Mini Review. Curr. Pharm. Anal. 2009, 5, 256–268. [Google Scholar] [CrossRef]
- Jung, S.-H.; Park, D.; Park, J.H.; Kim, Y.-M.; Ha, K.-S. Molecular imaging of membrane proteins and microfilaments using atomic force microscopy. Exp. Mol. Med. 2010, 42, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gere, J.M. Mechanics of Materials, 6th ed.; Thomson-Engineering: Riverside, CA, USA, 2003. [Google Scholar]
- Bauchau, O.A.; Craig, J.I. Euler-Bernoulli Beam Theory BT-Structural Analysis; Springer: Dordrecht, The Netherlands, 2009; pp. 173–221. [Google Scholar] [CrossRef]
- Civalek, Ö.; Demir, Ç. Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 2011, 35, 2053–2067. [Google Scholar] [CrossRef]
- Wang, C.M. Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions. J. Eng. Mech. 1995, 121, 763–765. [Google Scholar] [CrossRef]
- Anastassakis, E.; Pinczuk, A.; Burstein, E.; Pollak, F.H.; Cardona, M. Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 1993, 88, 1053–1058. [Google Scholar] [CrossRef]
- Uchinokura, K.; Sekine, T.; Matsuura, E. Raman scattering by silicon. Solid State Commun. 1972, 11, 47–49. [Google Scholar] [CrossRef]
- De Wolf, I.; Maes, H.E.; Jones, S.K. Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment. J. Appl. Phys. 1996, 79, 7148–7156. [Google Scholar] [CrossRef]
- Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J. Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy. Opt. Express 2021, 29, 34531–34551. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, V.; Kumar, C.; Chaudhary, N.; Goyal, N.; Saxena, K. Comparative study of quantum confinements effect present in Silicon Nanowires using absorption and Raman spectroscopy. Opt. Mater. 2021, 121, 111538. [Google Scholar] [CrossRef]
- Malka, D.; Berke, B.A.; Tischler, Y.; Zalevsky, Z. Improving Raman spectra of pure silicon using super-resolved method. J. Opt. 2019, 21, 75801. [Google Scholar] [CrossRef]
- Trovalusci, P. Molecular Approaches for Multifield Continua: Origins and Current Developments BT-Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects; Sadowski, T., Trovalusci, P., Eds.; Springer: Vienna, Austria, 2014; pp. 211–278. [Google Scholar] [CrossRef]
- Tuna, M.; Leonetti, L.; Trovalusci, P.; Kirca, M. ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica 2020, 55, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Tuna, M.; Trovalusci, P. Scale dependent continuum approaches for discontinuous assemblies: ‘Explicit’ and ‘implicit’ non-local models. Mech. Res. Commun. 2020, 103, 103461. [Google Scholar] [CrossRef]
- Tuna, M.; Trovalusci, P. Stress distribution around an elliptic hole in a plate with ‘implicit’ and ‘explicit’ non-local models. Compos. Struct. 2021, 256, 113003. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of Micropolar Elasticity BT-Microcontinuum Field Theories: I. Foundations and Solids; Springer: New York, NY, USA, 1999; pp. 101–248. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Selvamani, R. 2-Mechanics of Smart Flexoelectric Nanobeams; Ebrahimi, F., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 23–73. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Selvamani, R. 4-Mechanics of Magneto-Electro-Elastic (MEE) Nanostructures—Nanobeams; Ebrahimi, F., Selvamani, R.B.T.-M., Selvamani, S.M.N., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 167–281. [Google Scholar] [CrossRef]
- Labuschagne, A.; van Rensburg, N.F.J.; van der Merwe, A.J. Comparison of linear beam theories. Math. Comput. Model. 2009, 49, 20–30. [Google Scholar] [CrossRef]
- Abazari, A.M.; Safavi, S.M.; Rezazadeh, G.; Villanueva, L.G. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures. Sensors 2015, 15, 28543. [Google Scholar] [CrossRef]
- Villanueva, L.G.; Karabalin, R.B.; Matheny, M.H.; Chi, D.; Sader, J.E.; Roukes, M.L. Nonlinearity in nanomechanical cantilevers. Phys. Rev. B 2013, 87, 24304. [Google Scholar] [CrossRef]
- Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 2011, 6, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Cuenot, S.; Demoustier-Champagne, S.; Fretigny, C.; Nysten, B. Size Effect on the Elastic Modulus of Nanomaterials as Measured by Resonant Contact Atomic Force Microscopy; Laudon, M., Romanowicz, B., Eds.; 2003 Nanotechnol. Conf. Trade Show. Nanotech 2003; Computational Publications: San Francisco, CA, USA, 2003; pp. 549–552. [Google Scholar]
- Nysten, B.; Fretigny, C.; Cuenot, S. Elastic modulus of nanomaterials: Resonant contact-AFM measurement and reduced-size effects. In Proceedings of the SPIE, Orlando, FL, USA, 28 March–1 April 2005. [Google Scholar] [CrossRef]
- Cuenot, S.; Frétigny, C.; Demoustier-Champagne, S.; Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 2004, 69, 165410. [Google Scholar] [CrossRef] [Green Version]
Length | Shear Force | Maximum Deflection | E-Modulus | Moment of Inertia |
---|---|---|---|---|
L = 191 μm | F = 251.8 μN | z = 3.9259 × 10−6 m | E = 169 GPa | I = 7.4858 × 10−22 m4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoli, C.K.; Papatzani, S.; Mouzakis, D.E. Exploring the Limits of Euler–Bernoulli Theory in Micromechanics. Axioms 2022, 11, 142. https://doi.org/10.3390/axioms11030142
Manoli CK, Papatzani S, Mouzakis DE. Exploring the Limits of Euler–Bernoulli Theory in Micromechanics. Axioms. 2022; 11(3):142. https://doi.org/10.3390/axioms11030142
Chicago/Turabian StyleManoli, Chrysoula K., Styliani Papatzani, and Dionysios E. Mouzakis. 2022. "Exploring the Limits of Euler–Bernoulli Theory in Micromechanics" Axioms 11, no. 3: 142. https://doi.org/10.3390/axioms11030142
APA StyleManoli, C. K., Papatzani, S., & Mouzakis, D. E. (2022). Exploring the Limits of Euler–Bernoulli Theory in Micromechanics. Axioms, 11(3), 142. https://doi.org/10.3390/axioms11030142