Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions
Abstract
:1. Definitions and Preliminaries
2. Coefficient Bounds of the Class
3. Corollaries and Consequences
4. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewin, M. On a Coefficient Problem for Bi-Univalent Functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |ξ|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient Estimates for a Class of Analytic and Bi-univalent Functions. Novi. Sad. J. Math. 2013, 43, 59–65. [Google Scholar]
- Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Afr. Mat. 2021, 32, 431–439. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Estimates on Coefficients of a General Subclass of Bi-univalent Functions Associated with Symmetric q-Derivative Operator by Means of the Chebyshev Polynomials. Asia Pac. J. Math. 2017, 8, 90–99. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New Subclasses of Bi-Univalent Functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some Properties of a Linear Operator Involving Generalized Mittag-Leffler Function. Stud. Univ. Babeş-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient Bounds for Certain Subclasses of Bi-univalent Function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficient Estimates for Certain Classes of Analytic Functions of Complex Order. Afr. Mat. 2018, 29, 1265–1271. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain Subclasses of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2021, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö Functional Problems for some Subclasses of Bi-univalent Functions Defined by Frasin Differential Operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-univalent Functions Endowed with Coefficient Estimate Problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer Polynomials and Bi-Univalent Functions. Pales. J. Math. 2021, 10, 625–632. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Legendre, A. Recherches sur Laattraction des SphéROIDES Homogénes; Mémoires Présentes par Divers Savants a laAcadémie des Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Reimer, M. Multivariate Polynomial Approximation; Birkh Auser: Basel, Switzerland, 2012. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič Functions of Order ϑ + iδ Associated with (p, q)-Lucas Polynomials. AIMS Math. 2021, 6, 4296–4306. [Google Scholar] [CrossRef]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev Polynomials to Certain Class of Bi-Bazilevič Functions of Order α + iβ. Afr. Mat. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A Comprehensive Subclass of Bi-univalent Functions Associated with Chebyshev Polynomials of the Second Kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Magesh, N.; Bulut, S. Chebyshev polynomial Coefficient Estimates for a Class of Analytic Bi-Univalent Functions Related to Pseudo-Starlike Functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
- Amourah, A.A.; Yousef, F. Some Properties of a Class of Analytic Functions Involving a New Generalized Differential Operator. Bol. Soc. Paran. Mat. 2020, 38, 33–42. [Google Scholar] [CrossRef]
- Amourah, A.A.; Yousef, F.; Al-Hawary, T.; Darus, M. On H3(p) Hankel Determinant for Certain Subclass of p-Valent Functions. Ital. J. Pure Appl. Math. 2017, 37, 611–618. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms 2022, 11, 147. https://doi.org/10.3390/axioms11040147
Illafe M, Amourah A, Haji Mohd M. Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms. 2022; 11(4):147. https://doi.org/10.3390/axioms11040147
Chicago/Turabian StyleIllafe, Mohamed, Ala Amourah, and Maisarah Haji Mohd. 2022. "Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions" Axioms 11, no. 4: 147. https://doi.org/10.3390/axioms11040147
APA StyleIllafe, M., Amourah, A., & Haji Mohd, M. (2022). Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms, 11(4), 147. https://doi.org/10.3390/axioms11040147