Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels
Abstract
:1. Introduction
1.1. Literature Review
- (i)
- K is a function away from the origin;
- (ii)
- K is homogeneous of degree -n;
- (iii)
- the mean value of K on the unit sphere vanishes;
- (iiii)
- is a real-value polynomial on .
1.2. Definitions of Singular and Hypersingular Integrals
- (i)
- The above limit exists;
- (ii)
- has at least p derivatives in the neighborhood of a point .
1.3. Optimal Quadrature Formulas for Calculating Singular and Hypersingular Integrals
2. Levin’s Method for Evaluating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels
3. Quadrature Formulas for Evaluating Singular Integrals with Rapidly Oscillating Functions
3.1. Lower Bound Estimates for Quadrature Formula Errors
3.2. Quadrature Formulas
4. Approximate Evaluation of Hypersingular Integrals with Rapidly Oscillating Functions
- (1)
- p is an even natural number;
- (2)
- p is an odd natural number.
- (1)
- (2)
- (3)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boykov, I.V. Optimal with Respect to Accuracy Algorithms for Approximate Computation of Singular Integrals; Saratov State University Press: Saratov, Russia, 1983. (In Russian) [Google Scholar]
- Boikov, I.V. Numerical methods of computation of singular and hypersingular integrals. Int. J. Math. Math. Sci. 2001, 28, 127–179. [Google Scholar] [CrossRef] [Green Version]
- Boykov, I.V. Approximate Methods for Evaluation of Singular and Hypersingular Integrals, Part 1, Singular Integrals; Penza State University Press: Penza, Russia, 2005. (In Russian) [Google Scholar]
- Boykov, I.V. Approximate Methods for Evaluation of Singular and Hypersingular Integrals, Part 2, Hypersingular Integrals; Penza State University Press: Penza, Russia, 2009. (In Russian) [Google Scholar]
- Boykov, I.V.; Ventsel, E.S.; Boykova, A.I. Accuracy optimal methods for evaluating hypersingular integrals. Appl. Numer. Math. 2009, 59, 1366–1385. [Google Scholar]
- Boykov, I.V.; Aikashev, P.V. Approximate methods for calculating hypersingular integrals. Univ. Proc. Volga Reg. Phys. Math. Sci. Math. 2021, 1, 66–84. (In Russian) [Google Scholar] [CrossRef]
- Khubezhty, S.S. Quadrature Formulas for Singular Integrals and Some of Their Applications; Southern Mathematical Institute: Vladikavkaz, Russia, 2011; Volume 13. (In Russian) [Google Scholar]
- Lifanov, I.K.; Vainikko, G.; Poltavskii, L.N. Integral Equations and Their Applications; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Capobianco, M.R.; Criscuolo, G. On quadrature for Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 2003, 156, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Evans, G.A.; Webster, J.R. A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math. 2000, 34, 85–93. [Google Scholar] [CrossRef]
- Hota, M.K.; Soha, A.K.; Ojha, P.; Mohanty, T. On the approximate evolution of oscillatory-singular integrals. Cogent Math. 2017, 4, 1314066. [Google Scholar]
- Keller, P. A practical algorithm for computing Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput. 2012, 218, 4988–5001. [Google Scholar]
- Milovanovic, G.V. Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 1998, 36, 19–39. [Google Scholar] [CrossRef] [Green Version]
- Okecha, G.E. Quadrature formulae for Cauchy principal value integrals of oscillatory kind. Math. Comp. 1987, 49, 259–268. [Google Scholar]
- Okecha, G.E. Hermite Interpolation and a method for evaluating Cauchy principal value integrals of oscillatory kind. Kragujev. J. Math. 2006, 29, 91–98. [Google Scholar]
- Ryabov, V.M. Quadrature formulae for evaluating singular integrals of oscillating functions. Comput. Math. Math. Phys. 2006, 36, 1011–1015. [Google Scholar]
- Wang, H.; Xiang, S. On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 2010, 234, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Ding, Y.; Yan, D. Singular Integrals and Related Topics; World Scientific Publications: Singapore, 2007. [Google Scholar]
- Lebedev, V.L.; Baburin, O.V. Calculation of the principal values, weights and nodes of the Gauss quadrature formulae of integrals. USSR Comput. Math. Math. Phys. 1965, 5, 81–92. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, S. A Levin method for logarithmically singular oscillatory integrals. arXiv 2019, arXiv:1901.05192v1. [Google Scholar]
- Levin, D. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 1982, 38, 531–538. [Google Scholar]
- Levin, D. Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 1997, 78, 131–138. [Google Scholar]
- Hadamard, J. Lecons sur la Propagation des Ondes et les Equations de l’Hydrodynamique; Reprinted by Chelsea: New York, NY, USA, 1949. [Google Scholar]
- Hadamard, J. A Study of the Psychology of the Invention Process in the Field of Mathematics; Trans. from French 1959; Publishing House “Soviet Radio”: Moscow, Russia, 1970. [Google Scholar]
- Chikin, L.A. Special cases of the Riemann boundary value problems and singular integral equations. Sci. Notes Kazan State Univ. 1953, 113, 53–105. (In Russian) [Google Scholar]
- Bakhvalov, N.S. Properties of optimal methods for the solution of problems of mathematical physics. USSR Comput. Math. Math. Phys. 1970, 10, 555–568. [Google Scholar]
- Babenko, K.I. Fundamentals of Numerical Analysis; Research Center “Regular and Chaotic Dynamics”: Moscow-Izhevsk, Russia, 2002. (In Russian) [Google Scholar]
- Sukharev, A.G. Minimax Algorithms in Problems of Numerical Analysis; Nauka: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Traub, J.F.; Werschulz, A.G. Complexity and Information; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Brab, H. Bounds for Peano Kernals. In Numerical Integration IV, INSM 112; Brab, H., Hamerlin, G., Eds.; Birkhauser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1993; pp. 39–55. [Google Scholar]
- Boikov, I.V.; Syomov, M.A. On a method of calculation of hypersingular integrals. Russ. Math. 2016, 60, 1–13. [Google Scholar]
- Mikhlin, S.G. Singular integral equations. Uspekhi Mat. Nauk 1948, 3, 29–112. (In Russian) [Google Scholar]
- Gaier, D. Methoden der Konformen Abbildung; Springer: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boykov, I.; Roudnev, V.; Boykova, A. Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels. Axioms 2022, 11, 150. https://doi.org/10.3390/axioms11040150
Boykov I, Roudnev V, Boykova A. Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels. Axioms. 2022; 11(4):150. https://doi.org/10.3390/axioms11040150
Chicago/Turabian StyleBoykov, Ilya, Vladimir Roudnev, and Alla Boykova. 2022. "Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels" Axioms 11, no. 4: 150. https://doi.org/10.3390/axioms11040150
APA StyleBoykov, I., Roudnev, V., & Boykova, A. (2022). Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels. Axioms, 11(4), 150. https://doi.org/10.3390/axioms11040150