Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model
Abstract
:1. Introduction
2. Related Work
2.1. Notations
2.2. Subspace Clustering Models
2.3. GCSC Framework
2.4. HSI Clustering Using the GCSC Models
3. Methodology
SSAKGCSC
4. Experiments Results
4.1. Setup
4.1.1. Data Sets and Preprocessing
4.1.2. Evaluation Metrics
4.1.3. Compared Methods
4.2. Test Results
4.2.1. Images without Noise
4.2.2. Images with Salt and Pepper Noise
4.2.3. Images with Gaussian Noise
4.2.4. Images with Gaussian Noise and Salt and Pepper Noise
4.3. Impact of the Number of PCs
4.4. Comparison of Running Times
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 968–999. [Google Scholar] [CrossRef]
- Cai, Y.; Dong, Z.; Cai, Z.; Liu, X.; Wang, G. Discriminative spectral-spatial attention-aware residual network for hyperspectral image classification. In Proceedings of the 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, H.; Zheng, K.; Gao, L.; Song, M. A Novel Classification Framework for Hyperspectral Image Classification Based on Multiscale Spectral-Spatial Convolutional Network. In Proceedings of the 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y.Y. Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, J.; Liu, C.; Li, S. Recent Advances on Spectral–Spatial Hyperspectral Image Classification: An Overview and New Guidelines. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1579–1597. [Google Scholar] [CrossRef]
- Chairet, R.; Ben Salem, Y.; Aoun, M. Land cover classification of GeoEye image based on Convolutional Neural Networks. In Proceedings of the 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 20–23 July 2020; pp. 458–461. [Google Scholar] [CrossRef]
- Hu, P.; Liu, X.; Cai, Y.; Cai, Z. Band Selection of Hyperspectral Images Using Multiobjective Optimization-Based Sparse Self-Representation. IEEE Geosci. Remote Sens. Lett. 2018, 16, 452–456. [Google Scholar] [CrossRef]
- Chang, J.; Meng, G.; Wang, L.; Xiang, S.; Pan, C. Deep Self-Evolution Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 809–823. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, Z.; Evangelidis, G.D.; Zhang, C.; Pang, S.; Li, Z. Efficient registration of multi-view point sets by K-means clustering. Inf. Sci. 2019, 488, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.; Cai, Y.; Cai, Z.; Liu, X.; Hu, P.; Ku, J. Unsupervised Hyperspectral Image Band Selection Based on Deep Subspace Clustering. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1889–1893. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B.; You, J.; Tao, D. Hyperspectral image unsupervised classification by robust manifold matrix factorization. Inf. Sci. 2019, 485, 154–169. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T. Kernel Subspace Clustering with Block Diagonal Prior. In Proceedings of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 23–25 October 2020; pp. 367–370. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P.; Plaza, A. A New Sparse Subspace Clustering Algorithm for Hyperspectral Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 43–47. [Google Scholar] [CrossRef]
- Wei, Y.; Niu, C.; Wang, Y.; Wang, H.; Liu, D. The Fast Spectral Clustering Based on Spatial Information for Large Scale Hyperspectral Image. IEEE Access 2019, 7, 141045–141054. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, X.; Liu, X.; Li, M.; Wang, P.; Zhang, C.; Wang, L. Learning a Joint Affinity Graph for Multiview Subspace Clustering. IEEE Trans. Multimedia 2019, 21, 1724–1736. [Google Scholar] [CrossRef]
- Hinojosa, C.; Vera, E.; Arguello, H. A Fast and Accurate Similarity-Constrained Subspace Clustering Algorithm for Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10773–10783. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2765–2781. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.; Favaro, P. Low rank subspace clustering (LRSC). Pattern Recognit. Lett. 2013, 43, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.M.; Vidal, R. Kernel sparse subspace clustering. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2849–2853. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Laplacian-Regularized Low-Rank Subspace Clustering for Hyperspectral Image Band Selection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1723–1740. [Google Scholar] [CrossRef]
- Ji, P.; Salzmann, M.; Li, H. Efficient dense subspace clustering. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 461–468. [Google Scholar] [CrossRef]
- Yang, X.; Xu, W.-D.; Liu, H.; Zhu, L.-Y. Research on Dimensionality Reduction of Hyperspectral Image under Close Range. In Proceedings of the 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), Haikou, China, 5–7 July 2019; pp. 171–174. [Google Scholar] [CrossRef]
- Tian, L.; Du, Q.; Kopriva, I. L0-Motivated Low Rank Sparse Subspace Clustering for Hyperspectral Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1038–1041. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Lin, Z.; Mei, T.; Yan, S. Subspace Clustering by Block Diagonal Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Kipf, T.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning Representations, 9 September 2016; pp. 1–14. [Google Scholar] [CrossRef]
- Xu, H.; Yao, S.; Li, Q.; Ye, Z. An Improved K-means Clustering Algorithm. In Proceedings of the 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Dortmund, Germany, 17–18 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Wang, F.; Song, M.; Chang, C.-I. Hyperspectral Band Selection Based on Improved Affinity Propagation. In Proceedings of the 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Pardo, A. Analysis of non-local image denoising methods. Pattern Recognit. Lett. 2011, 32, 2145–2149. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Cai, Z.; Jiang, X.; Chen, Z. Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine. Sensors 2020, 20, 1262. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Wilson, R.C.; Hancock, E. Spectral embedding of graphs. Pattern Recognit. 2003, 36, 2213–2230. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation. IEEE Trans. Fuzzy Syst. 2019, 27, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gu, H.; Han, Y.; Li, H. An End-to-End Deep Learning Change Detection Framework for Remote Sensing Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 652–655. [Google Scholar] [CrossRef]
- Chang, J.; Oh, M.-H.; Park, B.-G. A systematic model parameter extraction using differential evolution searching. In Proceedings of the 2019 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 9–10 June 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Kong, Y.; Cheng, Y.; Chen, C.L.P.; Wang, X. Hyperspectral Image Clustering Based on Unsupervised Broad Learning. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1741–1745. [Google Scholar] [CrossRef]
- Eichel, J.A.; Wong, A.; Fieguth, P.; Clausi, D.A. Robust Spectral Clustering Using Statistical Sub-Graph Affinity Model. PLoS ONE 2013, 8, e82722. [Google Scholar] [CrossRef] [Green Version]
- JayaSree, M.; Rao, L.K. A Deep Insight into Deep Learning Architectures, Algorithms and Applications. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1134–1142. [Google Scholar] [CrossRef]
- Pan, Y.; Jiao, Y.; Li, T.; Gu, Y. An efficient algorithm for hyperspectral image clustering. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2167–2171. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Cai, Z.; Liu, X.; Jiang, X.; Yan, Q. Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4191–4202. [Google Scholar] [CrossRef]
- Zeng, M.; Cai, Y.; Liu, X.; Cai, Z.; Li, X. Spectral–spatial clustering of hyperspectral image based on Laplacian regularized deep subspace clustering. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 2694–2697. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, S.; Li, Y.; Zhang, J.; Yang, L.; Fang, Y. Low-Rank Sparse Subspace for Spectral Clustering. IEEE Trans. Knowl. Data Eng. 2019, 31, 1532–1543. [Google Scholar] [CrossRef]
- Wan, Y.; Zhong, Y.; Ma, A.; Zhang, L. Multi-Objective Sparse Subspace Clustering for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2290–2307. [Google Scholar] [CrossRef]
- Gong, W.; Wang, Y.; Cai, Z.; Wang, L. Finding Multiple Roots of Nonlinear Equation Systems via a Repulsion-Based Adaptive Differential Evolution. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 1499–1513. [Google Scholar] [CrossRef]
Data Sets | SalinasA | Indian Pines Corrected | Pavia University | Pavia Center |
---|---|---|---|---|
Pixels | 83 × 86 | 85 × 70 | 140 × 150 | 150 × 150 |
Channels | 204 | 200 | 103 | 103 |
Clusters | 6 | 4 | 8 | 7 |
Samples | 5348 | 4391 | 6445 | 5710 |
Sensor | AVIRIS | AVIRIS | ROSIS | ROSIS |
Data Sets | Noise | REG_Coef | GAMMA | NEIGHBOR | RO | post_proC | Kernel |
---|---|---|---|---|---|---|---|
- 1 | 100 | 0.2 | |||||
SalinasA. | +sp 2 | 0.01 | 0.2 | 30 | 0.8 | 8, 18 | K0 |
+gs 3 | 100 | 0.2 | |||||
+sg 4 | 1 | 0.2 | |||||
- 1 | 10,000 | 10 | |||||
Indian Pines. | +sp 2 | 100,000 | 0.1 | 30 | 0.8 | 17, 15 | K0 × K1 |
+gs 3 | 100,000 | 0.01 | |||||
+sg 4 | 1,000,000 | 0.001 | |||||
- 1 | 60,000 | 65 | |||||
Pavia University | +sp 2 | 150 | 100 | 30 | 0.8 | 8, 18 | K0 × K1 |
+gs 3 | 10 | 100 | |||||
+sg 4 | 500 | 100 | |||||
- 1 | 0.01 | 100 | |||||
Pavia Center | +sp 2 | 1100 | 100 | 30 | 0.8 | 8, 18 | K0 |
+gs 3 | 0.6 | 100 | |||||
+sg 4 | 1000 | 100 |
Data | Metric | LRSC [19] | SSC [18] | S4C [14] | EDSC [24] | EGCSC [31] | EKGCSC [31] | SSAKGCSC |
---|---|---|---|---|---|---|---|---|
OA | 0.5009 | 0.7590 | 0.8070 | 0.8899 | 0.9993 | 1.0000 | 0.9989 | |
SaA. | NMI | 0.4657 | 0.7210 | 0.7563 | 0.8532 | 0.9971 | 1.0000 | 0.9960 |
Kappa | 0.4861 | 0.6953 | 0.7694 | 0.8327 | 0.9991 | 1.0000 | 0.9986 | |
OA | 0.5752 | 0.5609 | 0.6497 | 0.7026 | 0.8827 | 0.9731 | 0.9743 | |
InP. | NMI | 0.5128 | 0.5081 | 0.6028 | 0.6544 | 0.6976 | 0.9128 | 0.9139 |
Kappa | 0.4566 | 0.4997 | 0.6325 | 0.6234 | 0.8308 | 0.9615 | 0.9632 | |
OA | 0.4616 | 0.6427 | 0.6672 | 0.6594 | 0.8442 | 0.9732 | 0.9708 | |
PaU. | NMI | 0.4327 | 0.5994 | 0.6135 | 0.6252 | 0.8401 | 0.9482 | 0.9453 |
Kappa | 0.4425 | 0.5846 | 0.6047 | 0.6019 | 0.7968 | 0.9646 | 0.9538 | |
OA | 0.5306 | 0.6026 | 0.7280 | 0.7539 | 0.8030 | 0.9448 | 0.9443 | |
PaC. | NMI | 0.4461 | 0.6801 | 0.7567 | 0.7873 | 0.8114 | 0.9252 | 0.9206 |
Kappa | 0.3773 | 0.4732 | 0.6401 | 0.6766 | 0.7447 | 0.9296 | 0.9289 |
Data | Metric | LRSC [19] | SSC [18] | S4C [14] | EDSC [24] | EGCSC [31] | EKGCSC [31] | SSAKGCSC |
---|---|---|---|---|---|---|---|---|
OA | 0.4349 | 0.4860 | 0.5108 | 0.6103 | 0.6803 | 0.4574 | 0.8347 | |
SaA. | NMI | 0.4411 | 0.4413 | 0.5363 | 0.5827 | 0.7520 | 0.4331 | 0.8527 |
Kappa | 0.4157 | 0.4253 | 0.4634 | 0.5329 | 0.5781 | 0.2641 | 0.7905 | |
OA | 0.4029 | 0.4475 | 0.5063 | 0.5288 | 0.5707 | 0.5609 | 0.6634 | |
InP. | NMI | 0.3564 | 0.3869 | 0.4016 | 0.4320 | 0.4330 | 0.4651 | 0.4665 |
Kappa | 0.2658 | 0.3186 | 0.3356 | 0.3534 | 0.3729 | 0.4151 | 0.5149 | |
OA | 0.3769 | 0.5122 | 0.5331 | 0.5356 | 0.6012 | - | 0.7983 | |
PaU. | NMI | 0.4327 | 0.5994 | 0.6135 | 0.6252 | 0.8401 | - | 0.9453 |
Kappa | 0.4425 | 0.5846 | 0.6047 | 0.6019 | 0.7968 | - | 0.9538 | |
OA | 0.3821 | 0.5039 | 0.5238 | 0.6033 | 0.6422 | 0.3368 | 0.8501 | |
PaC. | NMI | 0.4250 | 0.5281 | 0.5031 | 0.5833 | 0.6103 | 0.0382 | 0.8145 |
Kappa | 0.2318 | 0.3572 | 0.3817 | 0.5007 | 0.5537 | 0.0302 | 0.8103 |
Data | Metric | LRSC [19] | SSC [18] | S4C [14] | EDSC [24] | EGCSC [31] | EKGCSC [31] | SSAKGCSC |
---|---|---|---|---|---|---|---|---|
OA | 0.3596 | 0.4761 | 0.5477 | 0.6197 | 0.5492 | 0.6073 | 0.8678 | |
SaA. | NMI | 0.3218 | 0.4536 | 0.5521 | 0.5747 | 0.6320 | 0.6639 | 0.9029 |
Kappa | 0.2764 | 0.4005 | 0.4353 | 0.4835 | 0.4180 | 0.4751 | 0.8310 | |
OA | 0.4320 | 0.4220 | 0.5329 | 0.5678 | 0.5930 | 0.5470 | 0.6495 | |
InP. | NMI | 0.3169 | 0.3059 | 0.3563 | 0.5146 | 0.4148 | 0.3951 | 0.5348 |
Kappa | 0.2899 | 0.2744 | 0.3102 | 0.4837 | 0.4009 | 0.3774 | 0.4697 | |
OA | 0.3690 | 0.3679 | 0.4251 | 0.4697 | 0.5119 | - | 0.6734 | |
PaU. | NMI | 0.3128 | 0.2843 | 0.3765 | 0.4167 | 0.4435 | - | 0.5902 |
Kappa | 0.2568 | 0.2363 | 0.2747 | 0.2858 | 0.3268 | - | 0.4807 | |
OA | 0.3163 | 0.3781 | 0.4951 | 0.4757 | 0.4844 | 0.3315 | 0.8855 | |
PaC. | NMI | 0.0197 | 0.2883 | 0.5382 | 0.3404 | 0.4231 | 0.1612 | 0.8606 |
Kappa | 0.0028 | 0.1998 | 0.3629 | 0.2755 | 0.3459 | 0.1046 | 0.8537 |
Data | Metric | LRSC [19] | SSC [18] | S4C [14] | EDSC [24] | EGCSC [31] | EKGCSC [31] | SSAKGCSC |
---|---|---|---|---|---|---|---|---|
OA | 0.4452 | 0.4706 | 0.5095 | 0.6079 | 0.6223 | 0.5997 | 0.8828 | |
SaA. | NMI | 0.3218 | 0.4536 | 0.5521 | 0.5747 | 0.6320 | 0.6639 | 0.9029 |
Kappa | 0.2764 | 0.4005 | 0.4353 | 0.4835 | 0.4180 | 0.4751 | 0.8310 | |
OA | 0.4180 | 0.4386 | 0.5133 | 0.5224 | 0.5468 | 0.5249 | 0.6450 | |
InP. | NMI | 0.3169 | 0.3059 | 0.3563 | 0.4446 | 0.4148 | 0.3951 | 0.4958 |
Kappa | 0.2899 | 0.2744 | 0.3102 | 0.4837 | 0.4009 | 0.3774 | 0.4697 | |
OA | 0.3722 | 0.3879 | 0.4330 | 0.4791 | 0.5092 | - | 0.6967 | |
PaU. | NMI | 0.3283 | 0.3247 | 0.3882 | 0.4082 | 0.4535 | - | 0.6102 |
Kappa | 0.2643 | 0.2695 | 0.3355 | 0.3564 | 0.3359 | - | 0.5338 | |
OA | 0.3417 | 0.4289 | 0.4797 | 0.4846 | 0.5203 | 0.3182 | 0.8872 | |
PaC. | NMI | 0.1792 | 0.2270 | 0.3704 | 0.3434 | 0.5023 | 0.0451 | 0.8697 |
Kappa | 0.1999 | 0.2233 | 0.2668 | 0.3022 | 0.3895 | 0.130 | 0.8564 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Wang, J.; Wu, C. Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model. Axioms 2022, 11, 269. https://doi.org/10.3390/axioms11060269
Lin Z, Wang J, Wu C. Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model. Axioms. 2022; 11(6):269. https://doi.org/10.3390/axioms11060269
Chicago/Turabian StyleLin, Zhenxian, Jiagang Wang, and Chengmao Wu. 2022. "Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model" Axioms 11, no. 6: 269. https://doi.org/10.3390/axioms11060269
APA StyleLin, Z., Wang, J., & Wu, C. (2022). Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model. Axioms, 11(6), 269. https://doi.org/10.3390/axioms11060269