Formation and Evolution of Ideal Interfirm Collaborative Innovation Networks Based on Decision-Making Rules for Partner Selection
Abstract
:1. Introduction
2. Methods and Methodology
2.1. Settings of Firms’ Knowledge Stocks
2.2. Settings of the Rules of Partner Selection
2.2.1. Influence of Social Capital on Partner Selection for Collaborative Innovation
2.2.2. Influence of Knowledge Distance on Partner Selection for Collaborative Innovation
2.2.3. Influence of Knowledge Complementarity on Partner Selection for Collaborative Innovation
2.2.4. The Formulation of the Rules of Partner Selection
2.3. Settings of Knowledge Exchange between Firms
2.4. Settings of Network Structure
3. Results and Discussions
3.1. Settings of Basic Parameters
3.2. Simulation and Analysis
3.2.1. Evolution of Knowledge Stock in a Collaborative Innovation Network
3.2.2. Evolution of the Knowledge Diffusion Network Structure in Collaborative Innovation Groups
3.3. Sensitivity Analysis
4. Conclusions
4.1. Conclusions
4.2. Contributions
4.3. Managerial Implication
4.4. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OECD. The Knowledge-Based Economy; OECD Publications: France, Paris, 1996. [Google Scholar]
- Bellini, E.; Piroli, G.; Pennacchio, L. Collaborative know-how and trust in university–industry collaborations: Empirical evidence from ICT firms. J. Technol. Transf. 2019, 44, 1939–1963. [Google Scholar] [CrossRef]
- Mueller, M.; Bogner, K.; Buchmann, T.; Kudic, M. The effect of structural disparities on knowledge diffusion in networks: An agent-based simulation model. J. Econ. Interact. Coord. 2017, 12, 613–634. [Google Scholar] [CrossRef]
- Baum, J.A.C.; Cowan, R.; Jonard, N. Network-independent partner selection and the evolution of innovation networks. Manag. Sci. 2010, 56, 2094–2110. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.M. Toward a knowledge-based theory of the firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Ahuja, G. Collaboration networks, structural holes, and innovation: A longitudinal study. Adm. Sci. Q. 2000, 45, 425–455. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Casseres, B.; Hagedoorn, J.; Jaffe, A.B. Do alliances promote knowledge flows? J. Financ. Econ. 2006, 80, 5–33. [Google Scholar] [CrossRef]
- Owen-Smith, J.; Powell, W.W. Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community. Organ. Sci. 2004, 15, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Podolny, J.M. Networks as the pipes and prisms of the market. Am. J. Sociol. 2001, 107, 33–60. [Google Scholar] [CrossRef]
- Schilling, M.A.; Phelps, C.C. Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Manag. Sci. 2007, 53, 1113–1126. [Google Scholar] [CrossRef]
- Fleming, L.; King, C., III; Juda, A.I. Small worlds and regional innovation. Organ. Sci. 2007, 18, 938–954. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Zhang, Q.Q.; Han, Z.L.; Ding, Y. Evolution characteristics of government-industry-university cooperative innovation network of electronic information industry in Liaoning Province, China. Chin. Geogr. Sci. 2019, 29, 528–540. [Google Scholar] [CrossRef] [Green Version]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Yan, Y.; Zhang, J.J.; Guan, J.C. The dynamics of technological partners: A social network perspective. Technol. Anal. Strateg. Manag. 2018, 30, 405–420. [Google Scholar] [CrossRef]
- Cao, X.; Li, C. Evolutionary game simulation of knowledge transfer in industry-university-research cooperative innovation network under different network scales. Sci. Rep. 2020, 10, 4027. [Google Scholar] [CrossRef] [Green Version]
- Laciana, C.E.; Rovere, S.L. Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Phys. A Stat. Mech. Appl. 2011, 390, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.; Jonard, N. Network structure and the diffusion of knowledge. J. Econ. Dyn. Control 2004, 28, 1557–1575. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.; Jonard, N. Network architecture, barter exchange and the diffusion of ideas. Int. J. Agric. Resour. Gov. Ecol. 2007, 6, 165–178. [Google Scholar] [CrossRef]
- Cowan, R.; Jonard, N. Structural holes, innovation and the distribution of ideas. J. Econ. Interact. Coord. 2007, 2, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Kim, S.H.; Lee, J. Role of network structure and network effects in diffusion of innovations. Ind. Mark. Manag. 2010, 39, 170–177. [Google Scholar] [CrossRef]
- Delre, S.A.; Jager, W.; Janssen, M.A. Diffusion dynamics in small-world networks with heterogeneous consumers. Comput. Math. Organ. Theory 2007, 13, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Eslami, H.; Ebadi, A.; Schiffauerova, A. Effect of collaboration network structure on knowledge creation and technological performance: The case of biotechnology in Canad. Scientometrics 2013, 97, 99–119. [Google Scholar] [CrossRef]
- Kim, H.; Park, Y. Structural effects of R&D collaboration network on knowledge diffusion performance. Expert Syst. Appl. 2009, 36, 8986–8992. [Google Scholar]
- Morone, A.; Morone, P.; Taylor, R. A Laboratory Experiment of Knowledge Diffusion Dynamics in Innovation, Industrial Dynamics and Structural Transformation; Springer: Berlin/Heidelberg, Germany, 2007; pp. 283–302. [Google Scholar]
- Amblard, F.; Deffuant, G. The role of network topology on extremism propagation with the relative agreement opinion dynamics. Phys. A Stat. Mech. Appl. 2004, 343, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Li, N. Scale-free network provides an optimal pattern for knowledge transfer. Phys. A Stat. Mech. Appl. 2010, 389, 473–480. [Google Scholar] [CrossRef]
- Stauffer, D.; Sahimi, M. Diffusion in scale-free networks with annealed disorder. Phys. Rev. E 2005, 72, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Xi, Y.; Ma, J. Estimating the effect of organizational structure on knowledge transfer: A neural network approach. Expert Syst. Appl. 2006, 30, 796–800. [Google Scholar] [CrossRef]
- Tang, F.; Mu, J.; MacLachlan, D.L. Disseminative capacity, organizational structure and knowledge transfer. Expert Syst. Appl. 2010, 37, 1586–1593. [Google Scholar] [CrossRef]
- Xuan, Z.; Xia, H.; Du, Y. Adjustment of knowledge-connection structure affects the performance of knowledge transfer. Expert Syst. Appl. 2011, 38, 14935–14944. [Google Scholar] [CrossRef]
- Morone, P.; Taylor, R. Knowledge diffusion dynamics and network properties of face-to-face interactions. J. Evol. Econ. 2004, 14, 327–351. [Google Scholar] [CrossRef]
- Oxley, J.E. Appropriability hazards and governance in strategic alliances: A transaction cost approach. J. Law Econ. Organ. 1997, 13, 387–409. [Google Scholar] [CrossRef]
- Gulati, R.; Gargiulo, M. Where do inter-organizational networks come from? Am. J. Sociol. 1999, 104, 1439–1493. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S.; Knez, M. Kinds of third-party effects on trust. Ration. Soc. 1995, 7, 255–292. [Google Scholar] [CrossRef]
- Burt, R.S.; Opper, S.; Holm, H.J. Cooperation beyond the network. Organ. Sci. Organ. Sci. 2021, 33, 495–871. [Google Scholar] [CrossRef]
- Cowan, R.; Jonard, N. Knowledge portfolios and the organization of innovation networks. Acad. Manag. Rev. 2009, 34, 320–342. [Google Scholar]
- Cowan, R.; Jonard, N.; Özman, M. Knowledge dynamics in a network industry. Technol. Forecast. Soc. Chang. 2004, 71, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.M.; Baden-Fuller, C. A knowledge accessing theory of strategic alliance. J. Manag. Stud. 2004, 41, 61–84. [Google Scholar] [CrossRef]
- Nooteboom, B. Learning by interaction: Absorptive capacity, cognitive distance and governance. J. Manag. Gov. 2000, 4, 69–92. [Google Scholar] [CrossRef]
- Mowery, D.C.; Oxley, J.E.; Silverman, B.S. Technological overlap and interfirm cooperation: Implications for the resource-based view of the firm. Res. Policy 1998, 27, 507–523. [Google Scholar] [CrossRef]
- Ahuja, G.; Katila, R. Technological acquisitions and the innovation performance of acquiring firms: A longitudinal study. Strateg. Manag. J. 2001, 22, 197–220. [Google Scholar] [CrossRef]
- Uzzi, B. Social structure and competition in interfirm networks: The paradox of embeddedness. Adm. Sci. Q. 1997, 42, 35–67. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Meng, J.; Hu, Q.; Li, F.; Gui, Y. Formation and Evolution of Ideal Interfirm Collaborative Innovation Networks Based on Decision-Making Rules for Partner Selection. Axioms 2022, 11, 312. https://doi.org/10.3390/axioms11070312
Tang H, Meng J, Hu Q, Li F, Gui Y. Formation and Evolution of Ideal Interfirm Collaborative Innovation Networks Based on Decision-Making Rules for Partner Selection. Axioms. 2022; 11(7):312. https://doi.org/10.3390/axioms11070312
Chicago/Turabian StyleTang, Houxing, Jiaqi Meng, Qifan Hu, Fang Li, and Yanping Gui. 2022. "Formation and Evolution of Ideal Interfirm Collaborative Innovation Networks Based on Decision-Making Rules for Partner Selection" Axioms 11, no. 7: 312. https://doi.org/10.3390/axioms11070312
APA StyleTang, H., Meng, J., Hu, Q., Li, F., & Gui, Y. (2022). Formation and Evolution of Ideal Interfirm Collaborative Innovation Networks Based on Decision-Making Rules for Partner Selection. Axioms, 11(7), 312. https://doi.org/10.3390/axioms11070312