Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions
Abstract
:1. Introduction
2. Definitions and Notation
3. Fourier and Inverse Fourier Transform on a Function Subset of
4. Boundary Values in
5. Cauchy Integral
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tillmann, H.-G. Darstellung der Schwartzschen Distributionen durch analytische Funktionen. Math. Z. 1961, 77, 106–124. [Google Scholar] [CrossRef]
- Köthe, G. Die Randverteilungen analytischer Funktionen. Math. Z. 1952, 57, 13–33. [Google Scholar] [CrossRef]
- Köthe, G. Dualität in der Funktionentheorie. J. Reine Angew. Math. 1953, 191, 30–49. [Google Scholar] [CrossRef]
- Carmichael, R.D.; Walker, W.W. Representation of distributions with compact support. Manuscr. Math. 1974, 11, 305–338. [Google Scholar] [CrossRef]
- Sebastião e Silva, J. Les séries de multipôles des physiciens et la théorie des ultradistributions. Math. Annalen 1967, 174, 109–142. [Google Scholar] [CrossRef]
- Sebastião e Silva, J. Les fonctions analytiques comme ultra-distributions dan le calcul opérationnel. Math. Annalen 1958, 136, 58–96. [Google Scholar] [CrossRef]
- Carmichael, R.D. n-dimensional Cauchy integral of tempered distributions. J. Elisha Mitchell Sci. Soc. 1977, 93, 115–135. [Google Scholar]
- Vladimirov, V.S. Generalization of the Cauchy-Bochner integral representation. Math. USSR Izv. 1969, 3, 87–104. [Google Scholar] [CrossRef]
- Vladimirov, V.S. On Cauchy-Bochner representations. Math. USSR Izv. 1972, 6, 529–535. [Google Scholar] [CrossRef]
- Vladimirov, V.S. The Laplace transform of tempered distributions. Glob. Anal. Appl. Int. Sem. Course Trieste. 1974, III, 243–270. [Google Scholar]
- Vladimirov, V.S. Methods of the Theory of Functions of Many Complex Variables; The M.I.T. Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Vladimirov, V.S. Generalized Functions in Mathematical Physics; Mir Publishers: Moscow, Russia, 1979. [Google Scholar]
- Dunford, N.; Schwartz, J. Linear Operators Part I; Interscience Publishers Inc.: New York, NY, USA, 1966. [Google Scholar]
- Schwartz, L. Théorie des Distributions a Valeurs Vectorielles I. Ann. Inst. Fourier 1957, 7, 1–149. [Google Scholar] [CrossRef]
- Schwartz, L. Théorie des Distributions a Valeurs Vectorielles II. Ann. Inst. Fourier 1958, 8, 1–209. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R.D. Generalized vector-valued Hardy functions. Axioms 2022, 11, 39. [Google Scholar] [CrossRef]
- Carmichael, R.D.; Kamiński, A.; Pilipović, S. Boundary Values and Convolution in Ultradistribution Spaces; World Scientific Publishing: Singapore, 2007. [Google Scholar]
- Arendt, W.; Batty, C.; Hieber, M.; Neubrander, F. Vector-Valued Laplace Transforms and Cauchy Problems, 2nd ed.; Birkhauser/Springer: Basel, Switzerland, 2011. [Google Scholar]
- Kwapień, S. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 1972, 44, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, L. Transformation de Laplace des distributions. Comm. Sém. Math. Univ. Lund (Tome Suppl.) 1952, 196–206. [Google Scholar]
- Lions, J.L. Supports dans la Tranformation de Laplace. J. Analyse Math. 1952–1953, 11, 369–380. [Google Scholar] [CrossRef]
- Yoshinaga, K. Values of vector-valued distributions and smoothness of semi-group distributions. Bull. Kyushu Inst. Tech. 1965, 12, 1–27. [Google Scholar]
- Streater, R.F.; Wightman, A.S. PCT, Spin and Statistics, and All That; W. A. Benjamin, Inc.: New York, NY, USA, 1964. [Google Scholar]
- Simon, B. The P(Φ)2 Euclidean (Quantum) Field Theory; Princeton University Press: Princeton, NJ, USA, 1974. [Google Scholar]
- Raina, A.K. On the role of Hardy spaces in form factor bounds. Lett. Math. Phys. 1978, 2, 513–519. [Google Scholar] [CrossRef]
- Vladimirov, V.S. Problems of linear conjugacy of holomorphic functions of several complex variables. Amer. Math. Soc. Transl. 1968, 71, 203–232. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmichael, R.D. Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions. Axioms 2022, 11, 392. https://doi.org/10.3390/axioms11080392
Carmichael RD. Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions. Axioms. 2022; 11(8):392. https://doi.org/10.3390/axioms11080392
Chicago/Turabian StyleCarmichael, Richard D. 2022. "Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions" Axioms 11, no. 8: 392. https://doi.org/10.3390/axioms11080392
APA StyleCarmichael, R. D. (2022). Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions. Axioms, 11(8), 392. https://doi.org/10.3390/axioms11080392