A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of the Problem
2.2. Uniqueness of the Solution and Its Continuous Dependence on Input Data
2.3. Formulation of the Discrete Problem
- (a)
- , ;
- (b)
- , ;
- (c)
- ;
- (d)
- .
2.4. Stability and Convergence of the Numerical Method
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berkowitz, B. Characterizing Flow and Transport in Fractured Geological Media: A Review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- De Borst, R. Fluid Flow in Fractured and Fracturing Porous Media: A Unified View. Mech. Res. Commun. 2017, 80, 47–57. [Google Scholar] [CrossRef]
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transp. Porous Media 2019, 130, 215–236. [Google Scholar] [CrossRef]
- Ma, J. Review of Permeability Evolution Model for Fractured Porous Media. J. Rock Mech. Geotech. Eng. 2015, 7, 351–357. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A Finite Element Method for Crack Growth Without Remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Rabczuk, T.; Belytschko, T. Cracking Particles: A Simplified Meshfree Method for Arbitrary Evolving Cracks. Int. J. Numer. Methods Eng. 2004, 61, 2316–2343. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, X. Cracking Elements: A Self-Propagating Strong Discontinuity Embedded Approach for Quasi-Brittle Fracture. Finite Elem. Anal. Des. 2018, 144, 84–100. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.; Marigo, J.-J. The Variational Approach to Fracture; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Mikelić, A.; Wheeler, M.F.; Wick, T. Phase-Field Modeling of a Fluid-Driven Fracture in a Poroelastic Medium. Comput. Geosci. 2015, 19, 1171–1195. [Google Scholar] [CrossRef]
- Santillán, D.; Juanes, R.; Cueto-Felgueroso, L. Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction. J. Geophys. Res. Solid Earth 2018, 123, 2127–2155. [Google Scholar] [CrossRef]
- Zhou, S.; Zhuang, X.; Rabczuk, T. Phase-Field Modeling of Fluid-Driven Dynamic Cracking in Porous Media. Comput. Methods Appl. Mech. Eng. 2019, 350, 169–198. [Google Scholar] [CrossRef]
- Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M.-A. Phase Field Modeling of Fracture in Anisotropic Brittle Solids. Int. J. Non Linear Mech. 2017, 97, 1–21. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Réthoré, J.; Baietto, M.-C. Phase Field Modelling of Anisotropic Crack Propagation. Eur. J. Mech. A Solids 2017, 65, 279–288. [Google Scholar] [CrossRef]
- Noii, N.; Fan, M.; Wick, T.; Jin, Y. A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal-dual active set method. Eng. Fract. Mech. 2021, 258, 108060. [Google Scholar] [CrossRef]
- Neitzel, I.; Wick, T.; Wollner, W. An optimal control problem governed by a regularized phase-field fracture propagation model. SIAM J. Control Optim. 2017, 55, 2271–2288. [Google Scholar] [CrossRef]
- Lee, S.; Min, B.; Wheeler, M.F. Optimal Design of Hydraulic Fracturing in Porous Media Using the Phase Field Fracture Model Coupled with Genetic Algorithm. Comput. Geosci. 2018, 22, 833–849. [Google Scholar] [CrossRef]
- Caputo, M. Models of Flux in Porous Media with Memory. Water Resour. Res. 2000, 36, 693–705. [Google Scholar] [CrossRef]
- He, J.H. Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media. Comput. Methods Appl. Mech. Eng. 1998, 167, 57–88. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Moroni, M.; Caputo, M. Flux in Porous Media with Memory: Models and Experiments. Transp. Porous Media 2010, 83, 479–500. [Google Scholar] [CrossRef]
- Caputo, M. Diffusion of Fluids in Porous Media with Memory. Geothermics 1999, 23, 113–130. [Google Scholar] [CrossRef]
- Zhong, W.; Li, C.; Kou, J. Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media. Adv. Math. Phys. 2013, 2013, 429835. [Google Scholar] [CrossRef]
- Hossain, M.E. Numerical Investigation of Memory-Based Diffusivity Equation: The Integro-Differential Equation. Arab. J. Sci. Eng. 2016, 41, 2715–2729. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S.D. Existence and Uniqueness of Miscible Flow Equation through Porous Media with a Non Singular Fractional Derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yang, S.; Zhang, S.Q. Modeling of Non-Darcian Flow and Solute Transport in Porous Media with Caputo-Fabrizio Derivative. Appl. Math. Model. 2019, 68, 603–615. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Fractional Differential Approach to Modeling Filtration Processes in Complex Inhomogeneous Porous Media. Vestnik UGATU 2017, 21, 104–112. (In Russian) [Google Scholar]
- Obembe, A.D.; Al-Yousef, H.Y.; Hossain, M.E.; Abu-Khamsin, S. Fractional Derivatives and Their Applications in Reservoir Engineering Problems: A Review. J. Pet. Sci. Eng. 2017, 157, 312–327. [Google Scholar] [CrossRef]
- Bulavatsky, V.M. Solutions of Some Problems of Fractional-Differential Filtration Dynamics Based on Models with ABC-Fractional Derivative. Cybern. Syst. Anal. 2017, 53, 732–742. [Google Scholar] [CrossRef]
- Choudharya, A.; Kumarb, D.; Singh, J. A Fractional Model of Fluid Flow Through Porousmedia with Mean Capillary Pressure. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016, 21, 59–63. [Google Scholar]
- Baigereyev, D.; Alimbekova, N.; Berdyshev, A.; Madiyarov, M. Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media. Mathematics 2021, 9, 2179. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Schneider, W.R.; Wyss, W. Fractional Diffusion and Wave Equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Luchko, Y.; Mainardi, F.; Povstenko, Y. Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation. Comput. Math. Appl. 2013, 66, 774–784. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Lynch, V.E.; Carreras, B.A.; Del-Castillo-Negrete, D.; Ferreira-Mejias, K.M.; Hicks, H.R. Numerical Methods for the Solution of Partial Differential Equations of Fractional Order. J. Comput. Phys. 2003, 192, 406–421. [Google Scholar] [CrossRef]
- Du, R.; Yan, Y.; Liang, Z. A High-Order Scheme to Approximate the Caputo Fractional Derivative and its Application to Solve the Fractional Diffusion Wave Equation. J. Comput. Phys. 2019, 376, 1312–1330. [Google Scholar] [CrossRef]
- Agrawal, O. Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain. Nonlinear Dyn. 2002, 29, 145–155. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X. A Fully Discrete Difference Scheme for a Diffusion-Wave System. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Zeng, F. Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation. J. Sci. Comput. 2014, 65, 411–430. [Google Scholar] [CrossRef]
- Delić, A.; Jovanović, B.; Živanović, S. Finite Difference Approximation of a Generalized Time-Fractional Telegraph Equation. Comput. Methods Appl. Math. 2019, 20, 595–607. [Google Scholar] [CrossRef]
- Kumar, A.; Bhardwaj, A.; Dubey, S. A Local Meshless Method to Approximate the Time-Fractional Telegraph Equation. Eng. Comput. 2020, 37, 3473–3488. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Zhao, Y.M.; Wang, F.L.; Tang, Y.F. High-Accuracy Finite Element Method for 2D Time Fractional Diffusion-Wave Equation on Anisotropic Meshes. Int. J. Comput. Math. 2017, 95, 218–230. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Li, C. Fractional Difference/Finite Element Approximations for the Time-Space Fractional Telegraph Equation. Appl. Math. Comput. 2012, 219, 2975–2988. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, L. Generalized Finite Difference/Spectral Galerkin Approximations for the Time-Fractional Telegraph Equation. Adv. Differ. Equ. 2017, 219, 2975–2988. [Google Scholar] [CrossRef]
- Tasbozan, O.; Esen, A. Collocation Solutions for the Time Fractional Telegraph Equation Using Cubic B-Spline Finite Elements. Ann. West Univ. Timis. Math. Comput. Sci. 2019, 57, 131–144. [Google Scholar] [CrossRef]
- Caputo, M. Lineal Model of Dissipation Whose Q is Almost Frequancy Independent-II. Geophys. J. Astronom. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef]
- Shen, J. On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 1995, 32, 386–403. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Liao, H.L. Finite Difference Methods for the Time Fractional Diffusionequation on Non-Uniform Meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer: New York, NY, USA, 1991. [Google Scholar]
-Error | Order | -Error | Order | -Error | Order | |
---|---|---|---|---|---|---|
- | - | - | ||||
1.97 | 1.81 | 1.36 | ||||
1.93 | 1.79 | 1.31 | ||||
1.93 | 1.77 | 1.24 | ||||
1.94 | 1.73 | 1.17 | ||||
1.93 | 1.70 | 1.15 | ||||
1.93 | 1.66 | 1.13 | ||||
- | - | - | ||||
1.53 | 1.53 | 1.43 | ||||
1.54 | 1.55 | 1.40 | ||||
1.53 | 1.53 | 1.36 | ||||
1.51 | 1.51 | 1.30 | ||||
1.51 | 1.51 | 1.28 | ||||
1.51 | 1.51 | 1.24 | ||||
- | - | - | ||||
1.23 | 1.24 | 1.24 | ||||
1.18 | 1.19 | 1.19 | ||||
1.15 | 1.15 | 1.15 | ||||
1.10 | 1.10 | 1.10 | ||||
1.11 | 1.11 | 1.11 | ||||
1.11 | 1.11 | 1.11 |
-Error | Order | -Error | Order | -Error | Order | |
---|---|---|---|---|---|---|
- | - | - | ||||
1.18 | 1.18 | 1.18 | ||||
1.10 | 1.10 | 1.10 | ||||
1.05 | 1.05 | 1.05 | ||||
1.00 | 1.00 | 1.00 | ||||
1.01 | 1.01 | 1.01 | ||||
1.01 | 1.01 | 1.01 | ||||
- | - | - | ||||
1.18 | 1.19 | 1.19 | ||||
1.10 | 1.10 | 1.10 | ||||
1.05 | 1.05 | 1.05 | ||||
1.00 | 1.00 | 1.00 | ||||
1.01 | 1.01 | 1.01 | ||||
1.01 | 1.01 | 1.01 | ||||
- | - | - | ||||
1.18 | 1.18 | 1.18 | ||||
1.10 | 1.11 | 1.11 | ||||
1.06 | 1.06 | 1.07 | ||||
1.02 | 1.02 | 1.02 | ||||
1.03 | 1.03 | 1.03 | ||||
1.02 | 1.02 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimbekova, N.; Berdyshev, A.; Baigereyev, D. A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media. Axioms 2022, 11, 408. https://doi.org/10.3390/axioms11080408
Alimbekova N, Berdyshev A, Baigereyev D. A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media. Axioms. 2022; 11(8):408. https://doi.org/10.3390/axioms11080408
Chicago/Turabian StyleAlimbekova, Nurlana, Abdumauvlen Berdyshev, and Dossan Baigereyev. 2022. "A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media" Axioms 11, no. 8: 408. https://doi.org/10.3390/axioms11080408
APA StyleAlimbekova, N., Berdyshev, A., & Baigereyev, D. (2022). A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media. Axioms, 11(8), 408. https://doi.org/10.3390/axioms11080408