Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden Stochastic Process
Abstract
:1. Introduction
2. Stochastic-Process Modeling
3. Experimental Set-Up
4. Results and Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranfagni, A.; Mugnai, D.; Ruggeri, R. Unexpected behavior of crossing microwave beams. Phys. Rev. E 2004, 69, 027601. [Google Scholar] [CrossRef] [PubMed]
- Ranfagni, A.; Mugnai, D. Superluminal behavior in the near field of crossing microwave beams. Phys. Lett. A 2004, 322, 146–149. [Google Scholar] [CrossRef]
- Cacciari, I.; Mugnai, D.; Ranfagni, A.; Petrucci, A. Cross-modulation between microwave beams interpreted as a stochastic process. Int. J. Mod. Phys. B 2021, 35, 2150037. [Google Scholar] [CrossRef]
- Cacciari, I.; Mugnai, D.; Ranfagni, A. Delay time in the tansfer of modulation between between microwave beams. Eng. Rep. 2021, 3, e12392. [Google Scholar]
- Cacciari, I.; Ranfagni, A. On the origin of the transfer of modulation between microwave beams. Mod. Phys. Lett. B 2022, 33, 2250096. [Google Scholar] [CrossRef]
- Jordan, P.M.; Puri, A. Digital signal propagation in dispersive media. J. Appl. Phys. 1999, 85, 1273–1282. [Google Scholar] [CrossRef]
- Ford, N.J.; Xiao, J.; Yan, Y. Stability of a Numerical Method for a space-time-fractional telegraph equation. Comput. Methods Appl. Math. 2015, 12, 273–288. [Google Scholar] [CrossRef]
- Stojanović, Z.; Čajić, E. Application of Telegraph Equation Solution Telecommunication Signal Transmission and Visualization in Matlab. In Proceedings of the 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Minenna, D.F.G.; Terentyuk, A.G.; André, F.; Elskens, Y.; Ryskin, N.M. Recent discrete model for small-signal analysis of traveling-wave tubes. Phys. Scr. 2019, 94, 1–8. [Google Scholar] [CrossRef]
- Mokarram, A.; Abdipour, A.; Askarpour, A.N.; Mohammadzade, A.R. Time-domain signal and noise analysis of millimetre-wave/THz diodes by numerical solution of stochastic telegrapher’s equations. IET Microwaves Antennas Propag. 2020, 14, 1012–1020. [Google Scholar] [CrossRef]
- Banasiak, J.; Mika, J.R. Singular perturbed telegraph equations with applications in the random walk theory. J. Appl. Math. Stoch. Anal. 1998, 11, 9–28. [Google Scholar] [CrossRef]
- Weiss, G.H. Some applications of persistent random walks and the telegrapher’s equation. Phys. A Stat. Mech. Its Appl. 2002, 311, 381–410. [Google Scholar] [CrossRef]
- Garcia-Pelayo, R. The random flight and the persistent random walk. In Statistical Mechanics and Random Walks; Skogseid, A., Fasano, V., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 582–611. [Google Scholar]
- Masoliver, J. Telegraphic Transport Processes and Their Fractional Generalization: A Review and Some Extensions. Entropy 2021, 23, 364. [Google Scholar] [CrossRef] [PubMed]
- Weston, V.H.; He, S. Wave splitting of the telegraph equation in and its application to inverse scattering. Inverse Probl. 1993, 9, 789–812. [Google Scholar] [CrossRef]
- Sonnenschein, E.; Rutkevich, I.; Censor, D. Wave Packets and Group Velocity in Absorbing Media: Solutions of the Telegrapher’s Equation. Prog. Electromagn. Res. 2000, 27, 129–158. [Google Scholar] [CrossRef]
- Cáceres, M.O. Localization of plane waves in the stochastic telegrapher’s equation. Phys. Rev. E 2022, 105, 014110. [Google Scholar] [CrossRef]
- Kac, M. A Stochastic Model Related to the Telegrapher’s Equation. Rocky Mountain J. Math 1974, 4, 497–509. [Google Scholar] [CrossRef]
- DeWitt-Morette, C.; Foong, S.K. Path-integral solutions of wave equations with dissipation. Phys. Rev. Lett. 1989, 62, 2001–2004. [Google Scholar] [CrossRef]
- Foong, S.K. Kac’s Solution of the Telegrapher Equation (Part II). In Developments in General Relativity, Astrophysics and Quantum Theory: A Jubilee Volume in Honour of Nathan Rosen; Cooperstock, F.I., Horwitz, L.P., Rosen, J., Eds.; Institute of Physics: Bristol, UK, 1990; pp. 367–377. [Google Scholar]
- Mugnai, D.; Ranfagni, A.; Ruggeri, R.; Agresti, A. Semiclassical analysis of traversal time through Kac’s solution of the telegrapher’s equation. Phys. Rev. E 1994, 49, 1771–1774. [Google Scholar] [CrossRef]
- Sevimlican, A. An Approximation to Solution of Space and Time Fractional Telegraph Equations by He’s Variational Iteration Method. Math. Probl. Eng. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, W.; Mascagni, M. Revisiting Kac’s method: A Monte Carlo algorithm for solving the Telegrapher’s equations. Math. Comput. Simul. 2019, 156, 178–193. [Google Scholar] [CrossRef]
- Radice, M. One-dimensionale telegraphic process with noninstantaneous stochastic resetting. Phys. Rev. E 2021, 104, 044126. [Google Scholar] [CrossRef] [PubMed]
- Giona, M.; Cairoli, A.; Klages, R. Extended Poisson-Kac theory: A unifying framework for stochastic processes with finite propagation velocity. Phys. Rev. X 2022, 2, 021004. [Google Scholar] [CrossRef]
- Jacobson, T.; Schulman, L.S. Quantum stochastics: The passage from a relativistic to a non-relativistic path integral. J. Phys. A 1984, 17, 375–383. [Google Scholar] [CrossRef]
- Luo, J.; Tu, L.C.; Hu, Z.K.; Luan, E.J. New Experimental Limit on the Photon Rest Mass with a Rotating Torsion Balance. Phys. Rev. Lett. 2003, 90, 081801. [Google Scholar] [CrossRef] [PubMed]
- Toraldo di Francia, G. L’indagine del Mondo Fisico; Giulio Einaudi Ed: Torino, Italy, 1976; p. 338. [Google Scholar]
- Feynman, E.R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965; Chapter 7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranfagni, A.; Cacciari, I. Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden Stochastic Process. Axioms 2022, 11, 416. https://doi.org/10.3390/axioms11080416
Ranfagni A, Cacciari I. Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden Stochastic Process. Axioms. 2022; 11(8):416. https://doi.org/10.3390/axioms11080416
Chicago/Turabian StyleRanfagni, Anedio, and Ilaria Cacciari. 2022. "Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden Stochastic Process" Axioms 11, no. 8: 416. https://doi.org/10.3390/axioms11080416
APA StyleRanfagni, A., & Cacciari, I. (2022). Modulation Transfer between Microwave Beams: A Hypothesized Case of a Classically-Forbidden Stochastic Process. Axioms, 11(8), 416. https://doi.org/10.3390/axioms11080416