Variational Principle and Diverse Wave Structures of the Modified Benjamin-Bona-Mahony Equation Arising in the Optical Illusions Field
Abstract
:1. Introduction
2. The Two Methods
2.1. The VDM
2.2. The HFFM
3. Applications
3.1. The VDM
3.2. The HFFM
4. Results and Discussion
5. Conclusions and Future Recommendations
Funding
Data Availability Statement
Conflicts of Interest
References
- Sohail, M.; Chu, Y.M.; El-Zahar, E.R.; Nazir, U.; Naseem, T. Contribution of joule heating and viscous dissipation on three dimensional flow of Casson model comprising temperature dependent conductance utilizing shooting method. Phys. Scr. 2021, 96, 085208. [Google Scholar] [CrossRef]
- Biswas, A. Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 2020, 49, 580–583. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H. A fast insight into the nonlinear oscillators with coordinate-dependent mass. Results Phys. 2022, 39, 105759. [Google Scholar] [CrossRef]
- Ali, K.K.; Yilmazer, R.; Baskonus, H.M.; Bulut, H. New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics. Indian J. Phys. 2021, 95, 1003–1008. [Google Scholar] [CrossRef]
- Biswas, A.; Kara, A.H.; Sun, Y.; Zhou, Q.; Yıldırım, Y.; Alshehri, H.M.; Belic, M.R. Conservation laws for pure-cubic optical solitons with complex Ginzburg-Landau equation having several refractive index structures. Results Phys. 2021, 31, 104901. [Google Scholar] [CrossRef]
- Sohail, M.; Nazir, U.; Bazighifan, O.; El-Nabulsi, R.A.; Selim, M.M.; Alrabaiah, H.; Thounthong, P. Significant involvement of double diffusion theories on viscoelastic fluid comprising variable thermophysical properties. Micromachines 2021, 12, 951. [Google Scholar] [CrossRef]
- Attia, R.A.M.; Baleanu, D.; Lu, D.; Khater, M.M.; Ahmed, E.S. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discret. Contin. Dyn. Syst. S 2021, 14, 3459. [Google Scholar] [CrossRef]
- Wang, K.J.; Shi Feng Liu, J.H.; Si, J. Application of the extended F-expansion method for solving the fractional Gardner equation with conformable fractional derivative. Fractals 2022, 30, 2250139. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Liu, W.J. Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 2021, 38, 094201. [Google Scholar] [CrossRef]
- Wang, K.J. Investigation to the local fractional Fokas system on Cantor set by a novel technology. Fractals 2022, 30, 2250112. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Sonmezoglu, A.; Ekici, M. Extended trial equation method to generalized nonlinear partial differential equations. Appl. Math. Comput. 2013, 219, 5253–5260. [Google Scholar] [CrossRef]
- Hu, J.Y.; Feng, X.B.; Yang, Y.F. Optical envelope patterns perturbation with full nonlinearity for Gerdjikov–Ivanov equation by trial equation method. Optik 2021, 240, 166877. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H.; Sulaiman, T.A. New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 2019, 4, 129–138. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M.; Bulut, H. Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quantum Electron. 2017, 49, 285. [Google Scholar] [CrossRef]
- Alam, M.N.; Akbar, M.A. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G′/G)-expansion method. SpringerPlus 2013, 2, 617. [Google Scholar] [CrossRef]
- Teymuri Sindi, C.; Manafian, J. Wave solutions for variants of the KdV-Burger and the K (n, n)-Burger equations by the generalized G′/G-expansion method. Math. Methods Appl. Sci. 2017, 40, 4350–4363. [Google Scholar] [CrossRef]
- Wang, K.J. Abundant analytical solutions to the new coupled Konno-Oono equation arising in magnetic field. Results Phys. 2021, 31, 104931. [Google Scholar] [CrossRef]
- Zahran, E.H.M.; Khater, M.M.A. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 2016, 40, 1769–1775. [Google Scholar] [CrossRef]
- Mahak, N.; Akram, G. Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scr. 2019, 94, 115212. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.-H.; Wu, J. Soliton solutions to the Fokas system arising in monomode optical fibers. Optik 2022, 251, 168319. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Ahmad, J. Soliton solutions of fractional modified unstable Schrödinger equation using Exp-function method. Results Phys. 2020, 19, 103476. [Google Scholar] [CrossRef]
- Wang, K.J. Traveling wave solutions of the Gardner equation in dusty plasmas. Results Phys. 2022, 33, 105207. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Wang, K.J. Abundant exact soliton solutions to the Fokas system. Optik 2022, 249, 168265. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Yasin, S.; Raza, S.T.; Althobaiti, S. Monochromatic optical beam propagation of paraxial dynamical model in Kerr media. Results Phys. 2021, 31, 105015. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H. On abundant wave structures of the unsteady korteweg-de vries equation arising in shallow water. J. Ocean. Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Rehman, H.U.; Ullah, N.; Imran, M.A. Exact solutions of Kudryashov–Sinelshchikov equation using two analytical techniques. Eur. Phys. J. Plus 2021, 136, 647. [Google Scholar] [CrossRef]
- Wang, K.J. Generalized variational principles and new abundant wave structures of the fractal coupled Boussinesq equation. Fractals 2022, 30, 2250152. [Google Scholar] [CrossRef]
- Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Zahed, H. Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 2021, 44, 4094–4104. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ali, A.; Albarakati, W.A. Analytical wave solutions of the (2+1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods. Results Phys. 2019, 15, 102775. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Iqbal, M.; Lu, D. Application of mathematical methods on the ion sound and Langmuir waves dynamical systems. Pramana J. Phys. 2019, 93. [Google Scholar] [CrossRef]
- Wang, K.J. A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger’s equation. Results Phys. 2022, 40, 105872. [Google Scholar] [CrossRef]
- Gupta, A.K.; Hazarika, J. On the solitary wave solutions of modified Benjamin-Bona-Mahony equation for unidirectional propagation of long waves. Pramana 2020, 94, 134. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Waheed, A.; Al-Said, E.A. Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation. Comput. Math. Appl. 2011, 62, 2126–2131. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A.; Alam, M.N. Traveling wave solutions of the nonlinear Drinfel’d–Sokolov–Wilson equation and modified Benjamin-Bona-Mahony equations. J. Egypt. Math. Soc. 2013, 21, 233–240. [Google Scholar] [CrossRef]
- Naher, H.; Abdullah, F.A. The modified Benjamin-Bona-Mahony equation via the extended generalized Riccati equation mapping method. Appl. Math. Sci. 2012, 6, 5495–5512. [Google Scholar]
- Khater, M.M.A.; Salama, S.A. Semi-analytical and numerical simulations of the modified Benjamin-Bona-Mahony model. J. Ocean. Eng. Sci. 2022, 7, 264–271. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Shirzadi, A. The first integral method for modified Benjamin-Bona-Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1759–1764. [Google Scholar] [CrossRef]
- Song, M. Nonlinear wave solutions and their relations for the modified Benjamin–Bona–Mahony equation. Nonlinear Dyn. 2015, 80, 431–446. [Google Scholar] [CrossRef]
- Tariq, K.U.; Seadawy, A.R. On the soliton solutions to the modified Benjamin-Bona-Mahony and coupled Drinfel’d-Sokolov-Wilson models and its applications. J. King Saud Univ. Sci. 2020, 32, 156–162. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Application of exp-expansion method to find the exact solutions of modified Benjamin-Bona-Mahony equation. World Appl. Sci. J. 2013, 24, 1373–1377. [Google Scholar]
- Khater, M.M.; Nofal, T.A.; Abu-Zinadah, H.; Lotayif, M.S.; Lu, D. Novel computational and accurate numerical solutions of the modified Benjamin–Bona–Mahony (BBM) equation arising in the optical illusions field. Alex. Eng. J. 2021, 60, 1797–1806. [Google Scholar] [CrossRef]
- He, J.-H. Semi-Inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- He, J.-H. A family of variational principles for compressible rotational blade-toblade flow using semi-inverse method. Int. J. Turbo Jet Engines 1998, 15, 95–100. [Google Scholar]
- Wang, K.J.; Shi, F.; Liu, J.H. A fractal modification of the Sharma-Tasso-Olver equation and its fractal generalized variational principle. Fractals 2022, 30, 2250121. [Google Scholar] [CrossRef]
- Wang, K.L.; Wang, H. Fractal variational principles for two different types of fractal plasma models with variable coefficients. Fractals 2022, 30, 2250043. [Google Scholar] [CrossRef]
- Cao, X.Q.; Hou, S.C.; Guo, Y.N.; Zhang, C.Z.; Peng, K.C. Variational principle for (2+1)-dimensional Broer–Kaup equations with fractal derivatives. Fractals 2020, 28, 2050107. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, J.F. Generalized variational principles of the Benney-Lin equation arising in fluid dynamics. Europhys. Lett. 2022, 139, 33006. [Google Scholar] [CrossRef]
- Wang, K.J.; Si, J. Investigation into the Explicit Solutions of the Integrable (2+1)-Dimensional Maccari System via the Variational Approach. Axioms 2022, 11, 234. [Google Scholar] [CrossRef]
- He, J.H. The simplest approach to nonlinear oscillators. Results Phys. 2019, 15, 102546. [Google Scholar] [CrossRef]
- Wang, K.J. A fast insight into the nonlinear oscillation of nano-electro mechanical resonators considering the size effect and the van der Waals force. Europhys. Lett. 2022, 139, 23001. [Google Scholar] [CrossRef]
- He, J.H. The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise Vib. Act. Control. 2019, 38, 1252–1260. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Exact traveling wave solutions for the system of the ion sound and Langmuir waves by using three effective methods. Results Phys. 2022, 35, 105390. [Google Scholar] [CrossRef]
- He, J.H.; Ji, F.Y. Two-scale mathematics and fractional calculus for thermodynamics. Therm. Sci. 2019, 23, 2131–2133. [Google Scholar] [CrossRef]
- Wang, K.J. Exact traveling wave solutions to the local fractional (3+1)-dimensional Jimbo-Miwa equation on Cantor sets. Fractals 2022, 30, 2250102. [Google Scholar] [CrossRef]
- Wang, K.J. Abundant exact traveling wave solutions to the local fractional (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Fractals 2022, 30, 2250064. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Al-Mdallal, Q.M.; Khan, H.; Shah, K.; Khan, A. Fractional order mathematical modeling of COVID-19 transmission. Chaos Solitons Fractals 2020, 139, 110256. [Google Scholar] [CrossRef]
- Singh, J.; Ganbari, B.; Kumar, D.; Baleanu, D. Analysis of fractional model of guava for biological pest control with memory effect. J. Adv. Res. 2021, 32, 99–108. [Google Scholar] [CrossRef]
- Wang, K.L. Novel approach for fractal nonlinear oscillators with discontinuities by Fourier series. Fractals 2022, 30, 2250009. [Google Scholar] [CrossRef]
- Bartolomei, H.; Kumar, M.; Bisognin, R.; Marguerite, A.; Berroir, J.M.; Bocquillon, E.; Placais, B.; Cavanna, A.; Dong, Q.; Gennser, U.; et al. Fractional statistics in anyon collisions. Science 2020, 368, 173–177. [Google Scholar] [CrossRef]
- Wang, K.J.; Si, J. On the non-differentiable exact solutions of the (2+1)-dimensional local fractional breaking soliton equation on Cantor sets. Math. Methods Appl. Sci. 2022, in press. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C.; He, J.H.; Gepreel, K.A. Low frequency property of a fractal vibration model for a concrete beam. Fractals 2021, 29, 2150117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-J. Variational Principle and Diverse Wave Structures of the Modified Benjamin-Bona-Mahony Equation Arising in the Optical Illusions Field. Axioms 2022, 11, 445. https://doi.org/10.3390/axioms11090445
Wang K-J. Variational Principle and Diverse Wave Structures of the Modified Benjamin-Bona-Mahony Equation Arising in the Optical Illusions Field. Axioms. 2022; 11(9):445. https://doi.org/10.3390/axioms11090445
Chicago/Turabian StyleWang, Kang-Jia. 2022. "Variational Principle and Diverse Wave Structures of the Modified Benjamin-Bona-Mahony Equation Arising in the Optical Illusions Field" Axioms 11, no. 9: 445. https://doi.org/10.3390/axioms11090445
APA StyleWang, K. -J. (2022). Variational Principle and Diverse Wave Structures of the Modified Benjamin-Bona-Mahony Equation Arising in the Optical Illusions Field. Axioms, 11(9), 445. https://doi.org/10.3390/axioms11090445