2-D Elastodynamic Time-Reversal Analysis for Surface Defects on Thin Plate Using Topological Sensitivity
Abstract
:1. Introduction
2. Problem Statement
2.1. Analysis Model and Conditions
2.2. FEM Formulation for Lamb Wave Propagation and Scattering
2.2.1. Governing Equation and Selection of Numerical Method
2.2.2. Space and Time Discretization Using Pixel-Based Modeling
3. Time-Reversal and Topological Sensitivity
3.1. Time-Reversal Method
3.2. Topological Sensitivity
4. Numerical Example
4.1. Reconstruction of Single Surface Breaking Crack from Upper Side of a Plate
4.1.1. Forward Analysis for Single Surface Breaking Crack
4.1.2. Time-Reversal Analysis for Single Surface Breaking Crack
4.1.3. Reconstruction of Single Surface Breaking Crack
4.2. Reconstruction of Two Surface Breaking Cracks from Upper and Lower Side of a Plate
4.2.1. Forward Analysis for Two Surface Breaking Cracks
4.2.2. Time-Reversal Analysis for Two Surface Breaking Cracks
4.2.3. Reconstruction of Two Surface Breaking Cracks
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmerr, L.W. Fundamentals of Ultrasonic Nondestructive Evaluation; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Li, W.; Wang, Z.; Yin, X.; Yuan, X.; Yang, H.; Shao, X. Differential electromagnetic acoustic probes for quantitative detection of pipeline cracks. IEEE Sens. J. 2023, 23, 9820–9831. [Google Scholar] [CrossRef]
- Sato, M. Formulation of the FDTD method for separating the particle velocity vectors of an elastic wave field into longitudinal and shear wave components. Acoust. Sci. Technol. 2004, 25, 382–385. [Google Scholar] [CrossRef]
- Hughes, T. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Mansur, W.; Brebbia, C. Transient Elastodynamics Using a Time-Stepping Technique. In Boundary Elements; Brebbia, C.A., Futagami, T., Tanaka, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; pp. 677–698. [Google Scholar]
- Koshiba, M.; Karakida, S.; Suzuki, M. Finite-element analysis of Lamb wave scattering in an elastic plate waveguide. IEEE Trans. Sonics Ultrason. 1984, 31, 18–24. [Google Scholar] [CrossRef]
- Datta, S.; Al-Nassar, Y.; Shah, A. Lamb wave scattering by a surface breaking crack in a plate. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Cham, Switzerland, 1991; Volume 10, pp. 97–104. [Google Scholar]
- Galan, J.M.; Abascal, R. Lamb wave scattering by defects: A hybrid boundary element-finite element formulation. AIP Conf. Proc. 2002, 615, 211–218. [Google Scholar] [CrossRef]
- Hayashi, T. Guided wave simulation and visualization by a semi-analytical finite element method. Mater. Eval. 2003, 61, 75–79. [Google Scholar]
- Gunawan, A.; Hirose, S. Boundary element analysis of guided waves in a bar with an arbitrary cross-section. Eng. Anal. Bound. Elem. 2005, 29, 913–924. [Google Scholar] [CrossRef]
- Ng, C.; Veidt, M.; Rose, L.; Wang, C. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J. Sound Vib. 2012, 331, 4870–4883. [Google Scholar] [CrossRef]
- Rappel, H.; Yousefi-Koma, A.; Jamali, J.; Bahari, A. Numerical time-domain modeling of Lamb wave propagation using elastodynamic finite integration technique. Shock Vib. 2014, 2014, 434187. [Google Scholar] [CrossRef]
- Qu, E.; Qi, H.; Guo, J.; Wang, L.; Yang, J.; Liu, S. Dynamic response analysis of SH-guided waves in a strip-shaped elastic medium for a semi-cylindrical depression. Arch. Appl. Mech. 2023, 93, 1241–1258. [Google Scholar] [CrossRef]
- Gunawan, A.; Hirose, S. Mode-exciting method for Lamb wave-scattering analysis. J. Acoust. Soc. Am. 2004, 115, 996–1005. [Google Scholar] [CrossRef]
- Saitoh, T.; Gunawan, A.; Hirose, S. Application of fast multipole boundary element method to scattering analysis of SH waves by a lap joint. AIP Conf. Proc. 2003, 657, 1103–1110. [Google Scholar] [CrossRef]
- Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 1985, 60, 187–207. [Google Scholar] [CrossRef]
- Cho, Y.; Rose, J.L. An elastodynamic hybrid boundary element study for elastic guided wave interactions with a surface breaking defect. Int. J. Solids Struct. 2000, 37, 4103–4124. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Ning, H.; Yan, C.; Hu, N. An inverse approach of damage identification using Lamb wave tomography. Sensors 2019, 19, 2180. [Google Scholar] [CrossRef]
- Wang, B.; Qian, Z.; Hirose, S. Inverse shape reconstruction of inner cavities using guided SH-waves in a plate. Shock Vib. 2014, 2015, 195682. [Google Scholar] [CrossRef]
- Hudson, J.A.; Heritage, J.R. The use of the Born approximation in seismic scattering problems. Geophys. J. Int. 1981, 66, 221–240. [Google Scholar] [CrossRef]
- Saitoh, T.; Shimoda, M.; Inagaki, Y.; Hirose, S. Forward and inverse scattering analysis for defect in anisotropic plate using convolution quadrature time-domain boundary element method. J. Jpn. Soc. Civ. Eng. Ser. A2 (Appl. Mech.) 2016, 72, 237–246. [Google Scholar] [CrossRef]
- Han, X.; Yang, Y.; Liu, Y. Determining the defect locations and sizes in elastic plates by using the artificial neural network and boundary element method. Eng. Anal. Bound. Elem. 2022, 139, 232–245. [Google Scholar] [CrossRef]
- Singh, R. Purpose and pursuit of NDE 4.0. Mater. Eval. 2020, 78, 785–793. [Google Scholar] [CrossRef]
- Fink, M. Time reversal of ultrasonic fields—Part I: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 555–566. [Google Scholar] [CrossRef]
- Blanloeuil, P.; Rose, L.R.F.; Guinto, J.A.; Veidt, M.; Wang, C.H. Closed crack imaging using time reversal method based on fundamental and second harmonic scattering. Wave Motion 2016, 66, 156–176. [Google Scholar] [CrossRef]
- Kimoto, K.; Nakahata, K.; Saitoh, T. An elastodynamic computational time-reversal method for shape reconstruction of traction-free scatterers. Wave Motion 2017, 72, 23–40. [Google Scholar] [CrossRef]
- Lints, M.; Salupere, A.; Dos Santos, S. Numerical simulation of ultrasonic time reversal on defects in carbon fibre reinforced polymer. Wave Motion 2020, 94, 102526. [Google Scholar] [CrossRef]
- Bonnet, M. Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain. Comput. Methods Appl. Mech. Eng. 2006, 195, 5239–5254. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Saitoh, T.; Ishiguro, A. Surface crack detection in a thin plate using time reversal analysis of SH guided waves. Int. J. Struct. Eng. Mech. 2021, 80, 243–251. [Google Scholar]
- Schanz, M.; Antes, H. Application of ’Operational Quadrature Methods’in Time Domain Boundary Element Methods. Meccanica 1987, 32, 179–186. [Google Scholar] [CrossRef]
- Abreu, A.; Carrer, J.; Mansur, W. Scalar wave propagation in 2D: A BEM formulation based on the operational quadrature method. Eng. Anal. Bound. Elem. 2003, 27, 101–105. [Google Scholar] [CrossRef]
- Saitoh, T.; Hirose, S.; Fukui, T.; Ishida, T. Development of a time-domain fast multipole BEM based on the operational quadrature method in 2-D elastodynamics. Adv. Bound. Elem. Tech. IX 2008, 8, 339–346. [Google Scholar]
- Saitoh, T.; Hirose, S.; Fukui, T. Convolution quadrature time-domain boundary element method and acceleration by fast multipole method in 2-D viscoelastic wave propagation. Theor. Appl. Mech. Jpn. 2009, 57, 385–393. [Google Scholar]
- Frey, P.J.; Sarter, B.; Gautherie, M. Fully automatic mesh generation for 3-D domains based upon voxel sets. Int. J. Numer. Methods Eng. 1994, 37, 2735–2753. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Tashiro, M.; Saitoh, T.; Kimoto, K. 2-D elastodynamic time-reversal analysis using topological sensitivity and its application to ultrasonic linear array testing. J. Jpn. Soc. Civ. Eng. Ser. A2 (Appl. Mech.) 2020, 76, I_15–I_24. [Google Scholar] [CrossRef] [PubMed]
- Doctor, S.R.; Hall, T.E.; Reid, L.D. Saft—The evolution of a signal processing technology for ultrasonic testing. NDT Int. 1986, 19, 163–167. [Google Scholar] [CrossRef]
- Colton, D.; Coyle, J.; Monk, P. Recent developments in inverse acoustic scattering theory. SIAM Rev. 2000, 42, 369–414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitoh, T. 2-D Elastodynamic Time-Reversal Analysis for Surface Defects on Thin Plate Using Topological Sensitivity. Axioms 2023, 12, 920. https://doi.org/10.3390/axioms12100920
Saitoh T. 2-D Elastodynamic Time-Reversal Analysis for Surface Defects on Thin Plate Using Topological Sensitivity. Axioms. 2023; 12(10):920. https://doi.org/10.3390/axioms12100920
Chicago/Turabian StyleSaitoh, Takahiro. 2023. "2-D Elastodynamic Time-Reversal Analysis for Surface Defects on Thin Plate Using Topological Sensitivity" Axioms 12, no. 10: 920. https://doi.org/10.3390/axioms12100920
APA StyleSaitoh, T. (2023). 2-D Elastodynamic Time-Reversal Analysis for Surface Defects on Thin Plate Using Topological Sensitivity. Axioms, 12(10), 920. https://doi.org/10.3390/axioms12100920