-Contractions Endowed with Mann’s Iterative Scheme in Convex -Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (1):
- if and only if
- (2):
- ;
- (3):
- for every .
- (1):
- if
- (2):
- for every with ;
- (3):
- for every with ;
- (4):
- (5):
- there exists a real number such that for every .
- (1):
- If then
- (2):
- ;
- (3):
- ;
- (4):
- .
- (1)
- The sequence is a .
- (2)
- For all , there exists such that for any .
- :
- is increasing strictly.
- :
- For every sequence of positive numbers iff .
- :
- There exists such that .
- •
- At each point , there exist its left and right limits and . Moreover, for the function , one of the following two properties hold: or .
- There exists and such that
3. Main Results
- •
- Case 1: For any , we have
- •
- Case 2: For any , we have
- •
- Case 3: For any , we have
- •
- Case 4: For any , we have
- •
- Case 5: For any , we have
- •
- Case 6: For any , we have
- •
- Case 1: If , then
- •
- Case 2: If and , then
- •
- Case 3: If , then
- •
- Case 4: If , then
- (1):
- is a unique of .
- (2):
- For any sequence , if , then or if , then .
- Case 1: If , then , then by using (19),
- Case 2: If , then ,
- Case 3: If , then ,
4. Application
- (1):
- ;
- (2):
- ;
- (3):
- , , , and
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Dechboon, P.; Kumam, P.; Chaipunya, P.; Boonyam, N. A generalized -contraction for coupled fixed-point theorems and an applications to a two-person game. J. Nonlinear Funct. Anal. 2022, 2022, 11. [Google Scholar]
- Younis, M.; Singh, D.; Chen, L.; Metwali, M. A study on the solutions of notable engineering models. Math. Model. Anal. 2022, 27, 492–509. [Google Scholar] [CrossRef]
- Vul’pe, I.M.; Ostraih, D.; Hoiman, F. The Topological Structure of a Quasi-Metric Space. In Investigations in Functional Analysis and Differential Equations; Math. Sci., Interuniv. Work Collect.; Shtiintsa: Kishinev, Moldova, 1981; pp. 14–19. (In Russian) [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Shatanawi, W.; Taqi, A.M. New fixed-point results in controlled metric-type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Rezazgui, A.Z.; Tallafha, A.A.; Shatanawi, W. Common fixed-point results via Aν-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Meena Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. AIMS Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. The early developments in fixed point theory on b-metric spaces. Carpathian J. Math. 2022, 38, 523–538. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289. [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 2014, 64, 941–960. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Göhde, D. Zum prinzip der kontraktiven abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A. Two observations about the method of successive approximations. Usp. Math. Nauk 1955, 10, 123–127. [Google Scholar]
- Karakaya, V.; Atalan, Y.; Doğan, K.; Bouzara, N.E.H. Some fixed-point results for a new three step iteration process in Banach spaces. Fixed Point Theory Appl. 2017, 18, 625–640. [Google Scholar] [CrossRef]
- Sharma, P.; Ramos, H.; Behl, R.; Kanwar, V. A new three step fixed point iteration scheme with strong convergence and applications. J. Comput. Math. 2023, 430, 115242. [Google Scholar] [CrossRef]
- Kanwar, V.; Sharma, P.; Argyros, I.K.; Behl, R.; Argyros, C.; Ahmadian, A.; Salimi, M. Geometrically constructed family of the simple fixed point iteration method. Mathematics 2021, 9, 694. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Regan, D.O.; Sahu, D. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61. [Google Scholar]
- Sahu, D.R.; Petruşel, A. Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces. Nonlinear Anal. Theory Methods Appl. 2011, 74, 6012–6023. [Google Scholar] [CrossRef]
- Khan, S.H. A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 2013, 69. [Google Scholar] [CrossRef]
- Karahan, I.; Ozdemir, M. A general iterative method for approximation of fixed points and their applications. Adv. Fixed Point Theory 2013, 3, 510–526. [Google Scholar]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor, and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
- Afsharia, H.; Aydib, H. Some results about the Krasnosel’skiı-Mann iteration process. J. Nonlinear Sci. Appl. 2016, 9, 4852–4859. [Google Scholar] [CrossRef]
- Ji, D.; Li, C.; Cui, Y. Fixed points Theorems for Mann’s Iteration Scheme in Convex Gb-metric spaces with an Application. Axioms 2023, 12, 108. [Google Scholar] [CrossRef]
- Takahashi, W. A convexity in metric spaces and nonexpansive mappings, I. In Kodai mathematical seminar reports. Appl. Math. Comput. 1970, 22, 142–149. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Cosentino, M.; Vetro, P. Fixed point results for -contractive mappings of Hardy-Rogers-type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef]
- Asif, A.; Khan, S.U.; Abdeljawad, T.; Arshad, M.; Savas, E. 3D analysis of modified F-contractions in convex b-metric spaces with application to Fredholm integral equations. AIMS Math. 2020, 5, 6929–6948. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed-point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
- Norouzian, M.; Abkar, A. Tripartite coincidence-best proximity points and convexity in generalized metric spaces. Bull. Braz. Math. Soc. 2019, 50, 999–1028. [Google Scholar] [CrossRef]
- Popescu, O.; Stan, G. Two fixed-point theorems concerning F-contraction in complete metric spaces. Symmetry 2019, 12, 58. [Google Scholar] [CrossRef]
- Vujakovic, J.; Mitrovic, S.; Mitrovic, Z.D.; Radenovic, S. On Wardowski type results within G-metric spaces. In Advanced Mathematical Analysis and Its Applications; Taylor and Francis: London, UK, 2004. [Google Scholar]
- Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Čavić, V.Š.; Radenović, S. On F-Contractions: A Survey. Contemp. Math. 2022, 3, 327–342. [Google Scholar] [CrossRef]
- Vujakovic, J.; Mitrovic, S.; Mitrovic, Z.D.; Radenovic, S. On Wardowski type results within G-metric spaces. In Advanced Mathematical Analysis and Its Applications; Debnath, P., Torres, D.F.M., Cho, Y.J., Eds.; Third Chapter of the Book; CRC Press: Boca Raton, FL, USA, 2023; pp. 29–44. [Google Scholar]
- Huang, H.; Mitrović, Z.D.; Zoto, K.; Radenović, S. On convex F-contraction in b-metric spaces. Axioms 2021, 10, 71. [Google Scholar] [CrossRef]
- Jeong, G.S.; Rhoades, B.E. Maps for which F(T) = F(Tn). Fixed Point Theory Appl. 2007, 6, 71. [Google Scholar]
- Rahimi, H.; Rhoades, B.E.; Radenović, S.; Rad, G.S. Fixed and periodic point theorems for T-contractions on cone metric spaces. Filomat 2013, 27, 881–888. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.J.; Mani, G.; Ramaswamy, R.; Abdelnaby, O.A.A.; Khan, K.H.; Radenović, S. Application of Fixed-Point Results to Integral Equation through F-Khan Contraction. Symmetry 2023, 15, 773. [Google Scholar] [CrossRef]
- Panda, S.K.; Karapınar, E.; Atangana, A. A numerical schemes and comparisons for fixed-point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space. Alex. Eng. J. 2020, 59, 815–827. [Google Scholar] [CrossRef]
- Gupta, V.; Ege, O.; Saini, R. Extended Gb-metric spaces and some fixed-point results with an application to Fredholm integral equation. Electron. J. Math. Anal. Appl. 2022, 10, 219–227. [Google Scholar]
- Joseph, G.A.; Gunasekaran, N.; Gunaseelan, M.; Edge, O. Solution of an integral equation in G-metric spaces. Filomat 2023, 37, 8279–8287. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, A.; Batul, S.; Sagheer, D.-e.-S.; Ayoob, I.; Mlaiki, N.
Naz A, Batul S, Sagheer D-e-S, Ayoob I, Mlaiki N.
Naz, Amna, Samina Batul, Dur-e-Shehwar Sagheer, Irshad Ayoob, and Nabil Mlaiki.
2023. "
Naz, A., Batul, S., Sagheer, D. -e. -S., Ayoob, I., & Mlaiki, N.
(2023).