Adaptive Type-II Hybrid Progressive Censoring Samples for Statistical Inference of Comparative Inverse Weibull Distributions
Abstract
:1. Introduction
2. Joint Adaptive Type-II Hybrid Censoring Scheme
3. Methodology
3.1. Point Estimation
3.1.1. ML Estimation
3.1.2. Bayesian Estimation
3.1.3. MCMC Method
Algorithm 1: Importance sample algorithm |
|
3.2. Interval Estimation
3.2.1. Asymptotic Confidence Intervals
3.2.2. Bootstrap Confidence Intervals
3.2.3. Bayesian HP Credible Interval
- Step 1
- From the MCMC sample , …, generated by the importance sampling technique.
- Step 2
- Sort to obtain the ordered values,
- Step 3
- Compute the weighted functionThen, rewrite as so that the i-th value corresponds to the the value .
- Step 4
- The quantile of the marginal posterior of can be estimated by
- Step 5
- Compute the credible intervals of
- Step 6
- The ()100% HPD interval is the one with the smallest interval width among all credible intervals.
Algorithm 2: Bootstrap-p confidence intervals |
|
4. Numerical Results
4.1. Simulation Studies
Algorithm 3: Monte Carlo simulation study |
|
MLE | Bayes(P) | Bayes(P) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | CS | ||||||||||||||
0.5 | (20,20,15) | I | ME | 2.345 | 0.734 | 1.298 | 1.098 | 2.311 | 0.701 | 1.254 | 1.071 | 2.281 | 0.667 | 1.178 | 1.001 |
MSE | 0.321 | 0.147 | 0.224 | 0.200 | 0.301 | 0.132 | 0.207 | 0.193 | 0.301 | 0.132 | 0.207 | 0.193 | |||
II | ME | 2.338 | 0.739 | 1.277 | 1.077 | 2.288 | 0.698 | 1.251 | 1.062 | 2.254 | 0.648 | 1.170 | 0.978 | ||
MSE | 0.307 | 0.132 | 0.207 | 0.183 | 0.281 | 0.112 | 0.200 | 0.179 | 0.286 | 0.114 | 0.191 | 0.177 | |||
III | ME | 2.318 | 0.722 | 1.265 | 1.070 | 2.269 | 0.682 | 1.239 | 1.049 | 2.241 | 0.633 | 1.159 | 0.966 | ||
MSE | 0.288 | 0.111 | 0.188 | 0.166 | 0.264 | 0.092 | 0.181 | 0.161 | 0.265 | 0.100 | 0.177 | 0.168 | |||
IV | ME | 2.310 | 0.708 | 1.249 | 1.058 | 2.255 | 0.671 | 1.230 | 1.037 | 2.232 | 0.620 | 1.148 | 0.954 | ||
MSE | 0.255 | 0.092 | 0.171 | 0.152 | 0.248 | 0.081 | 0.168 | 0.145 | 0.249 | 0.081 | 0.160 | 0.152 | |||
(30,30,35) | I | ME | 2.241 | 0.645 | 1.200 | 0974 | 2.228 | 0.633 | 1.192 | 0966 | 2.187 | 0.556 | 1.099 | 0901 | |
MSE | 0.204 | 0.069 | 0.124 | 0.099 | 0.189 | 0.063 | 0.112 | 0.093 | 0.102 | 0.044 | 0.089 | 0.045 | |||
II | ME | 2.237 | 0.640 | 1.192 | 0968 | 2.221 | 0.625 | 1.188 | 0958 | 2.180 | 0.548 | 1.092 | 0893 | ||
MSE | 0.189 | 0.061 | 0.117 | 0.087 | 0.166 | 0.052 | 0.101 | 0.079 | 0.088 | 0.032 | 0.078 | 0.033 | |||
III | ME | 2.231 | 0.634 | 1.187 | 0961 | 2.214 | 0.614 | 1.180 | 0947 | 2.171 | 0.539 | 1.085 | 0885 | ||
MSE | 0.180 | 0.053 | 0.108 | 0.081 | 0.154 | 0.048 | 0.089 | 0.072 | 0.082 | 0.028 | 0.071 | 0.029 | |||
IV | ME | 2.224 | 0.629 | 1.182 | 0954 | 2.200 | 0.602 | 1.171 | 0942 | 2.165 | 0.533 | 1.080 | 0877 | ||
MSE | 0.165 | 0.044 | 0.098 | 0.073 | 0.145 | 0.040 | 0.075 | 0.064 | 0.077 | 0.018 | 0.064 | 0.023 | |||
1.0 | (20,20,15) | I | ME | 2.338 | 0.728 | 1.291 | 1.093 | 2.302 | 0.687 | 1.248 | 1.070 | 2.271 | 0.658 | 1.172 | 1.003 |
MSE | 0.312 | 0.138 | 0.215 | 0.192 | 0.294 | 0.123 | 0.199 | 0.187 | 0.293 | 0.125 | 0.201 | 0.189 | |||
II | ME | 2.332 | 0.740 | 1.278 | 1.071 | 2.279 | 0.691 | 1.244 | 1.058 | 2.255 | 0.639 | 1.162 | 0.971 | ||
MSE | 0.301 | 0.128 | 0.202 | 0.174 | 0.273 | 0.104 | 0.193 | 0.171 | 0.278 | 0.107 | 0.180 | 0.169 | |||
III | ME | 2.309 | 0.724 | 1.258 | 1.066 | 2.269 | 0.677 | 1.233 | 1.043 | 2.238 | 0.627 | 1.154 | 0.961 | ||
MSE | 0.281 | 0.103 | 0.179 | 0.161 | 0.258 | 0.088 | 0.174 | 0.157 | 0.261 | 0.097 | 0.166 | 0.161 | |||
IV | ME | 2.312 | 0.711 | 1.241 | 1.047 | 2.251 | 0.667 | 1.227 | 1.031 | 2.224 | 0.613 | 1.141 | 0.950 | ||
MSE | 0.247 | 0.090 | 0.166 | 0.143 | 0.241 | 0.074 | 0.162 | 0.138 | 0.242 | 0.074 | 0.152 | 0.145 | |||
(30,30,35) | I | ME | 2.233 | 0.640 | 1.201 | 0969 | 2.223 | 0.628 | 1.187 | 0961 | 2.182 | 0.548 | 1.092 | 0897 | |
MSE | 0.193 | 0.062 | 0.119 | 0.092 | 0.181 | 0.054 | 0.103 | 0.087 | 0.093 | 0.041 | 0.082 | 0.041 | |||
II | ME | 2.229 | 0.632 | 1.188 | 0961 | 2.217 | 0.614 | 1.182 | 0949 | 2.171 | 0.540 | 1.087 | 0888 | ||
MSE | 0.183 | 0.054 | 0.112 | 0.088 | 0.167 | 0.055 | 0.093 | 0.073 | 0.082 | 0.027 | 0.073 | 0.028 | |||
III | ME | 2.224 | 0.631 | 1.182 | 0958 | 2.211 | 0.609 | 1.178 | 0943 | 2.173 | 0.532 | 1.081 | 0881 | ||
MSE | 0.174 | 0.049 | 0.102 | 0.076 | 0.142 | 0.03 | 0.084 | 0.066 | 0.074 | 0.022 | 0.065 | 0.023 | |||
IV | ME | 2.218 | 0.622 | 1.175 | 0947 | 2.192 | 0.595 | 1.173 | 0935 | 2.161 | 0.524 | 1.082 | 0871 | ||
MSE | 0.161 | 0.039 | 0.092 | 0.066 | 0.140 | 0.032 | 0.071 | 0.055 | 0.072 | 0.014 | 0.059 | 0.018 |
MLE | Bayes(P) | Bayes(P) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | CS | ||||||||||||||
0.7 | (20,20,15) | I | ME | 1.324 | 1.842 | 0.742 | 2.356 | 1.311 | 1.818 | 0.724 | 2.333 | 1.211 | 1.547 | 0.621 | 2.188 |
MSE | 0.245 | 0.114 | 0.375 | 0.421 | 0.232 | 0.101 | 0.361 | 0.409 | 0.188 | 0.082 | 0.265 | 0.341 | |||
II | ME | 1.311 | 1.825 | 0.731 | 2.347 | 1.300 | 1.807 | 0.708 | 2.318 | 1.195 | 1.540 | 0.611 | 2.180 | ||
MSE | 0.238 | 0.111 | 0.369 | 0.417 | 0.219 | 0.092 | 0.349 | 0.401 | 0.175 | 0.075 | 0.251 | 0.336 | |||
III | ME | 1.304 | 1.818 | 0.732 | 2.341 | 1.291 | 1.801 | 0.702 | 2.308 | 1.188 | 1.536 | 0.602 | 2.169 | ||
MSE | 0.231 | 0.103 | 0.359 | 0.412 | 0.212 | 0.088 | 0.341 | 0.388 | 0.165 | 0.068 | 0.245 | 0.328 | |||
IV | ME | 1.289 | 1.812 | 0.727 | 2.335 | 1.287 | 1.792 | 0.691 | 2.302 | 1.181 | 1.527 | 0.592 | 2.161 | ||
MSE | 0.228 | 0.097 | 0.352 | 0.404 | 0.207 | 0.082 | 0.336 | 0.375 | 0.158 | 0.060 | 0.236 | 0.319 | |||
(30,30,35) | I | ME | 1.154 | 1.625 | 0.665 | 2.214 | 1.142 | 1.611 | 0.651 | 2.189 | 1.088 | 1.596 | 0.589 | 2.102 | |
MSE | 0.182 | 0.060 | 0.301 | 0.350 | 0.177 | 0.045 | 0.289 | 0.341 | 0.125 | 0.025 | 0.211 | 0.289 | |||
II | ME | 1.147 | 1.618 | 0.659 | 2.207 | 1.131 | 1.600 | 0.647 | 2.182 | 1.081 | 1.591 | 0.582 | 2.094 | ||
MSE | 0.175 | 0.054 | 0.294 | 0.345 | 0.170 | 0.039 | 0.282 | 0.338 | 0.120 | 0.021 | 0.201 | 0.283 | |||
III | ME | 1.141 | 1.612 | 0.651 | 2.197 | 1.122 | 1.588 | 0.641 | 2.169 | 1.077 | 1.585 | 0.571 | 2.088 | ||
MSE | 0.170 | 0.048 | 0.288 | 0.339 | 0.166 | 0.031 | 0.278 | 0.331 | 0.109 | 0.0158 | 0.188 | 0.269 | |||
IV | ME | 1.135 | 1.600 | 0.639 | 2.191 | 1.112 | 1.580 | 0.632 | 2.161 | 1.066 | 1.577 | 0.568 | 2.081 | ||
MSE | 0.150 | 0.041 | 0.254 | 0.312 | 0.135 | 0.014 | 0.252 | 0.311 | 0.091 | 0.0131 | 0.162 | 0.251 | |||
1.5 | (20,20,15) | I | ME | 1.312 | 1.829 | 0.728 | 2.347 | 1.300 | 1.807 | 0.712 | 2.324 | 1.200 | 1.540 | 0.614 | 2.180 |
MSE | 0.239 | 0.109 | 0.371 | 0.418 | 0.218 | 0.094 | 0.354 | 0.392 | 0.184 | 0.079 | 0.259 | 0.336 | |||
II | ME | 1.302 | 1.814 | 0.722 | 2.338 | 1.291 | 1.798 | 0.702 | 2.309 | 1.187 | 1.532 | 0.601 | 2.175 | ||
MSE | 0.232 | 0.104 | 0.363 | 0.411 | 0.209 | 0.088 | 0.342 | 0.400 | 0.168 | 0.070 | 0.244 | 0.329 | |||
III | ME | 1.277 | 1.814 | 0.725 | 2.331 | 1.284 | 1.792 | 0.692 | 2.301 | 1.178 | 1.528 | 0.556 | 2.161 | ||
MSE | 0.227 | 0.101 | 0.344 | 0.364 | 0.182 | 0.082 | 0.315 | 0.345 | 0.145 | 0.061 | 0.222 | 0.301 | |||
IV | ME | 1.275 | 1.811 | 0.721 | 2.328 | 1.281 | 1.792 | 0.691 | 2.298 | 1.171 | 1.521 | 0.552 | 2.155 | ||
MSE | 0.224 | 0.098 | 0.340 | 0.360 | 0.177 | 0.078 | 0.309 | 0.340 | 0.141 | 0.054 | 0.217 | 0.297 | |||
(30,30,35) | I | ME | 1.147 | 1.622 | 0.652 | 2.203 | 1.130 | 1.601 | 0.635 | 2.180 | 1.082 | 1.587 | 0.577 | 2.088 | |
MSE | 0.173 | 0.062 | 0.301 | 0.341 | 0.171 | 0.035 | 0.278 | 0.330 | 0.118 | 0.013 | 0.198 | 0.276 | |||
II | ME | 1.142 | 1.603 | 0.642 | 2.198 | 1.121 | 1.595 | 0.633 | 2.182 | 1.072 | 1.580 | 0.566 | 2.081 | ||
MSE | 0.164 | 0.047 | 0.283 | 0.340 | 0.161 | 0.024 | 0.271 | 0.326 | 0.110 | 0.012 | 0.184 | 0.271 | |||
III | ME | 1.131 | 1.597 | 0.639 | 2.188 | 1.110 | 1.572 | 0.619 | 2.161 | 1.064 | 1.570 | 0.555 | 2.077 | ||
MSE | 0.166 | 0.041 | 0.282 | 0.333 | 0.161 | 0.024 | 0.272 | 0.324 | 0.103 | 0.0153 | 0.182 | 0.264 | |||
IV | ME | 1.131 | 1.598 | 0.633 | 2.193 | 1.104 | 1.572 | 0.625 | 2.156 | 1.061 | 1.571 | 0.562 | 2.078 | ||
MSE | 0.145 | 0.039 | 0.247 | 0.303 | 0.131 | 0.012 | 0.247 | 0.305 | 0.087 | 0.0124 | 0.154 | 0.247 |
ACI | BCI | BHPI | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | CS | ||||||||||||||
0.5 | (20,20,15) | I | MIL | 3.541 | 1.325 | 2.457 | 1.854 | 3.523 | 1.312 | 2.432 | 1.828 | 3.245 | 1.135 | 2.255 | 1.542 |
CP | 0.88 | 0.89 | 0.89 | 0.89 | 0.90 | 0.91 | 0.90 | 0.90 | 0.91 | 0.91 | 0.92 | 0.91 | |||
II | MIL | 3.518 | 1.304 | 2.439 | 1.831 | 3.505 | 1.292 | 2.411 | 1.809 | 3.218 | 1.121 | 2.241 | 1.519 | ||
CP | 0.90 | 0.89 | 0.90 | 0.89 | 0.91 | 0.91 | 0.92 | 0.93 | 0.92 | 0.93 | 0.92 | 0.91 | |||
III | MIL | 3.509 | 1.295 | 2.425 | 1.820 | 3.497 | 1.281 | 2.400 | 1.801 | 3.207 | 1.109 | 2.229 | 1.503 | ||
CP | 0.91 | 0.89 | 0.92 | 0.90 | 0.91 | 0.92 | 0.93 | 0.91 | 0.92 | 0.93 | 0.92 | 0.94 | |||
IV | MIL | 3.491 | 1.284 | 2.420 | 1.808 | 3.494 | 1.274 | 2.391 | 1.791 | 3.201 | 1.089 | 2.214 | 1.500 | ||
CP | 0.92 | 0.90 | 0.91 | 0.90 | 0.92 | 0.92 | 0.91 | 0.91 | 0.93 | 0.93 | 0.93 | 0.91 | |||
(30,30,35) | I | MIL | 3.478 | 1.271 | 2.409 | 1.801 | 3.479 | 1.270 | 2.382 | 1.777 | 3.189 | 1.080 | 2.205 | 1.487 | |
CP | 0.92 | 0.91 | 0.93 | 0.92 | 0.92 | 0.92 | 0.90 | 0.91 | 0.91 | 0.95 | 0.93 | 0.94 | |||
II | MIL | 3.471 | 1.265 | 2.402 | 1.794 | 3.471 | 1.266 | 2.374 | 1.771 | 3.177 | 1.066 | 2.201 | 1.482 | ||
CP | 0.91 | 0.93 | 0.94 | 0.92 | 0.93 | 0.91 | 0.93 | 0.91 | 0.91 | 0.92 | 0.92 | 0.93 | |||
III | MIL | 3.461 | 1.260 | 2.387 | 1.778 | 3.460 | 1.252 | 2.363 | 1.759 | 3.170 | 1.049 | 2.189 | 1.477 | ||
CP | 0.93 | 0.91 | 0.92 | 0.95 | 0.93 | 0.93 | 0.94 | 0.91 | 0.95 | 0.92 | 0.95 | 0.94 | |||
IV | MIL | 3.423 | 1.248 | 2.384 | 1.771 | 3.449 | 1.242 | 2.360 | 1.751 | 3.164 | 1.041 | 2.183 | 1.469 | ||
CP | 0.93 | 0.92 | 0.92 | 0.95 | 0.93 | 0.92 | 0.94 | 0.92 | 0.95 | 0.92 | 0.92 | 0.92 | |||
1.0 | (20,20,15) | I | MIL | 3.532 | 1.319 | 2.448 | 1.851 | 3.517 | 1.304 | 2.424 | 1.820 | 3.235 | 1.127 | 2.249 | 1.545 |
CP | 0.89 | 0.89 | 0.90 | 0.90 | 0.91 | 0.91 | 0.89 | 0.91 | 0.92 | 0.92 | 0.92 | 0.92 | |||
II | MIL | 3.511 | 1.301 | 2.431 | 1.824 | 3.501 | 1.287 | 2.400 | 1.801 | 3.209 | 1.117 | 2.229 | 1.512 | ||
CP | 0.91 | 0.89 | 0.92 | 0.89 | 0.92 | 0.91 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.93 | |||
III | MIL | 3.501 | 1.287 | 2.411 | 1.808 | 3.491 | 1.271 | 2.402 | 1.790 | 3.202 | 1.102 | 2.215 | 1.492 | ||
CP | 0.91 | 0.90 | 0.92 | 0.93 | 0.91 | 0.92 | 0.92 | 0.91 | 0.95 | 0.93 | 0.92 | 0.96 | |||
IV | MIL | 3.487 | 1.280 | 2.422 | 1.801 | 3.487 | 1.266 | 2.388 | 1.785 | 3.194 | 1.082 | 2.208 | 1.492 | ||
CP | 0.92 | 0.95 | 0.92 | 0.90 | 0.92 | 0.95 | 0.91 | 0.94 | 0.93 | 0.94 | 0.94 | 0.92 | |||
(30,30,35) | I | MIL | 3.470 | 1.264 | 2.401 | 1.792 | 3.470 | 1.259 | 2.371 | 1.771 | 3.179 | 1.065 | 2.195 | 1.480 | |
CP | 0.93 | 0.93 | 0.93 | 0.92 | 0.93 | 0.93 | 0.90 | 0.93 | 0.91 | 0.93 | 0.93 | 0.96 | |||
II | MIL | 3.462 | 1.254 | 2.391 | 1.790 | 3.466 | 1.265 | 2.364 | 1.762 | 3.170 | 1.054 | 2.190 | 1.471 | ||
CP | 0.92 | 0.92 | 0.94 | 0.92 | 0.93 | 0.93 | 0.94 | 0.94 | 0.91 | 0.92 | 0.92 | 0.94 | |||
III | MIL | 3.451 | 1.249 | 2.380 | 1.768 | 3.451 | 1.242 | 2.356 | 1.750 | 3.162 | 1.041 | 2.182 | 1.470 | ||
CP | 0.93 | 0.92 | 0.92 | 0.94 | 0.94 | 0.92 | 0.94 | 0.91 | 0.94 | 0.92 | 0.95 | 0.92 | |||
IV | MIL | 3.418 | 1.239 | 2.377 | 1.762 | 3.441 | 1.233 | 2.349 | 1.747 | 3.160 | 1.036 | 2.175 | 1.461 | ||
CP | 0.94 | 0.92 | 0.94 | 0.94 | 0.93 | 0.92 | 0.94 | 0.92 | 0.95 | 0.94 | 0.92 | 0.94 |
ACI | BCI | BHPI | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | CS | ||||||||||||||
0.7 | (20,20,15) | I | MIL | 2.452 | 3.412 | 1.354 | 4.213 | 2.432 | 3.395 | 1.328 | 4.200 | 2.265 | 3.174 | 1.154 | 4.022 |
CP | 0.89 | 0.90 | 0.89 | 0.90 | 0.91 | 0.90 | 0.92 | 0.90 | 0.91 | 0.93 | 0.91 | 0.91 | |||
II | MIL | 2.441 | 3.403 | 1.342 | 4.207 | 2.418 | 3.381 | 1.311 | 4.187 | 2.254 | 3.162 | 1.142 | 4.007 | ||
CP | 0.90 | 0.91 | 0.89 | 0.90 | 0.91 | 0.93 | 0.92 | 0.94 | 0.92 | 0.95 | 0.92 | 0.93 | |||
III | MIL | 2.428 | 3.384 | 1.328 | 4.201 | 2.404 | 3.372 | 1.300 | 4.172 | 2.241 | 3.150 | 1.124 | 4.001 | ||
CP | 0.91 | 0.91 | 0.92 | 0.93 | 0.91 | 0.90 | 0.92 | 0.91 | 0.91 | 0.93 | 0.94 | 0.94 | |||
IV | MIL | 2.421 | 3.377 | 1.322 | 4.189 | 2.391 | 3.367 | 1.292 | 4.169 | 2.225 | 3.142 | 1.112 | 3.987 | ||
CP | 0.92 | 0.92 | 0.91 | 0.93 | 0.93 | 0.92 | 0.92 | 0.91 | 0.92 | 0.93 | 0.93 | 0.95 | |||
(30,30,35) | I | MIL | 2.390 | 3.352 | 1.291 | 4.155 | 2.362 | 3.332 | 1.266 | 4.166 | 2.202 | 3.114 | 1.082 | 3.952 | |
CP | 0.93 | 0.94 | 0.93 | 0.93 | 0.92 | 0.92 | 0.93 | 0.91 | 0.93 | 0.95 | 0.93 | 0.96 | |||
II | MIL | 2.382 | 3.340 | 1.278 | 4.142 | 2.349 | 3.327 | 1.254 | 4.149 | 2.189 | 3.100 | 1.070 | 3.938 | ||
CP | 0.92 | 0.91 | 0.92 | 0.93 | 0.92 | 0.91 | 0.93 | 0.93 | 0.91 | 0.94 | 0.93 | 0.92 | |||
III | MIL | 2.371 | 3.331 | 1.272 | 4.131 | 2.340 | 3.321 | 1.249 | 4.143 | 2.179 | 3.94 | 1.062 | 3.933 | ||
CP | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.92 | 0.91 | 0.95 | 0.94 | 0.95 | 0.95 | |||
IV | MIL | 2.362 | 3.324 | 1.262 | 4.119 | 2.332 | 3.314 | 1.240 | 4.131 | 2.170 | 3.923 | 1.049 | 3.925 | ||
CP | 0.91 | 0.92 | 0.92 | 0.91 | 0.93 | 0.92 | 0.93 | 0.92 | 0.95 | 0.93 | 0.92 | 0.93 | |||
1.5 | (20,20,15) | I | MIL | 2.448 | 3.413 | 1.354 | 4.207 | 2.424 | 3.391 | 1.317 | 4.187 | 2.261 | 3.169 | 1.155 | 4.014 |
CP | 0.90 | 0.90 | 0.89 | 0.91 | 0.91 | 0.92 | 0.92 | 0.93 | 0.91 | 0.94 | 0.92 | 0.93 | |||
II | MIL | 2.433 | 3.395 | 1.334 | 4.201 | 2.412 | 3.374 | 1.305 | 4.175 | 2.249 | 3.155 | 1.140 | 3.998 | ||
CP | 0.91 | 0.91 | 0.90 | 0.92 | 0.93 | 0.93 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.94 | |||
III | MIL | 2.421 | 3.377 | 1.321 | 4.194 | 2.392 | 3.366 | 1.292 | 4.170 | 2.244 | 3.144 | 1.118 | 4.003 | ||
CP | 0.92 | 0.92 | 0.93 | 0.92 | 0.91 | 0.92 | 0.92 | 0.91 | 0.92 | 0.93 | 0.94 | 0.92 | |||
IV | MIL | 2.414 | 3.371 | 1.315 | 4.181 | 2.379 | 3.362 | 1.284 | 4.162 | 2.227 | 3.136 | 1.104 | 3.979 | ||
CP | 0.93 | 0.92 | 0.92 | 0.93 | 0.93 | 0.92 | 0.96 | 0.92 | 0.92 | 0.93 | 0.96 | 0.95 | |||
(30,30,35) | I | MIL | 2.385 | 3.347 | 1.285 | 4.150 | 2.354 | 3.325 | 1.248 | 4.160 | 2.194 | 3.100 | 1.071 | 3.939 | |
CP | 0.94 | 0.94 | 0.94 | 0.93 | 0.92 | 0.94 | 0.93 | 0.94 | 0.93 | 0.94 | 0.93 | 0.90 | |||
II | MIL | 2.374 | 3.333 | 1.271 | 4.129 | 2.339 | 3.321 | 1.248 | 4.141 | 2.180 | 3.104 | 1.062 | 3.932 | ||
CP | 0.91 | 0.93 | 0.92 | 0.94 | 0.92 | 0.91 | 0.95 | 0.93 | 0.95 | 0.94 | 0.96 | 0.92 | |||
III | MIL | 2.365 | 3.319 | 1.270 | 4.133 | 2.328 | 3.314 | 1.240 | 4.139 | 2.173 | 3.936 | 1.054 | 3.928 | ||
CP | 0.91 | 0.92 | 0.94 | 0.93 | 0.93 | 0.96 | 0.92 | 0.96 | 0.95 | 0.94 | 0.93 | 0.92 | |||
IV | MIL | 2.355 | 3.318 | 1.254 | 4.108 | 2.324 | 3.307 | 1.225 | 4.125 | 2.166 | 3.920 | 1.039 | 3.911 | ||
CP | 0.93 | 0.92 | 0.93 | 0.91 | 0.93 | 0.93 | 0.93 | 0.94 | 0.95 | 0.93 | 0.94 | 0.95 |
- 1.
- 2.
- In general, the MSE of all estimates decreases as the effective sample sizes increase.
- 3.
- For all cases, the censoring scheme IV, in which the removed items after the first observed failure give more accurate results through the MSEs than the other schemes.
- 4.
- Estimations under ML and non-informative Bayes are close to others.
- 5.
- Bayesian estimation under informative prior information serves better than classical estimation (ML and bootstrapping) and non-informative Bayes estimation.
- 6.
- The proposed model serves well for all of the parameter values.
- 7.
- The informative Bayes credible interval serves better than bootstrap CIs and asymptotic CIs.
- 8.
- As the effective sample sizes increase, the coverage probability for the parameters is close to the nominal level of 0.95.
- 9.
- We also observed that better estimates are obtained by increasing the ideal test time .
4.2. Real Data Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IWD | Inverse Weibull distriburion | MCMC | Markov chain Monte Carlo method |
MH | Metropolis–Hastings algorithm. | Probability density function. | |
CDF | Cumulative distribution function. | CS | Censoring scheme |
PCS | Progressive censoring scheme | HCS | Hybrid censoring scheme |
HPCS | Hybrid progressive censoring scheme | JCS | Joint censoring scheme |
ML | Maximum likelihood | FIM | Fisher information matrix |
AIM | Approximate information matrix | HP | Highest probability |
ME | Mean estimate | MSE | Mean squared error |
AIL | Average interval length | CP | Coverage percentage |
References
- Liu, C.-C. A Comparison between the Weibull and Lognormal Models used to Analyze Reliability Data. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1997. [Google Scholar]
- Nelson, W. Applied Life Data Analysis; Wiley: New York, NY, USA, 1982; ISBN 0-471-09458-7. [Google Scholar]
- Cooray, K.; Gunasekera, S.; Ananda, M. Weibull and Inverse Weibull Composite Distribution for Modeling Reliability Data. Model Assist. Stat. Appl. 2010, 5, 109–115. [Google Scholar] [CrossRef]
- Nassar, M.; Abo-Kasem, O.E. Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme. J. Comput. Appl. Math. 2017, 315, 228–239. [Google Scholar] [CrossRef]
- Xu, R.; Gui, W. Entropy Estimation of InverseWeibull Distribution under Adaptive Type-II Progressive Hybrid Censoring Schemes. Symmmetry 2019, 11, 1463. [Google Scholar]
- Alkarni, S.; Afify, A.; Elbatal, I.; Elgarhy, M. The Extended Inverse Weibull Distribution: Properties and Applications. Complexity 2020, 2020, 3297693. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. Test 2007, 16, 211–259. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Chan, P.S. Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Ceram. Int. 2009, 35, 237–246. [Google Scholar] [CrossRef]
- Abd-Elmougod, G.A.; El-Sayed, M.A.; Abdel-Rahman, E.O. Coefficient of variation of Topp-Leone distribution under adaptive Type-II progressive censoring scheme: Bayesian and non-Bayesian approach. J. Comput. Theor. 2015, 12, 4028–4035. [Google Scholar] [CrossRef]
- Bhattacharyya, G.K.; Mehrotra, K.G. On testing equality of two exponential distributions under combined type-IIcensoring. J. Am. Stat. Assoc. 1981, 6, 886–894. [Google Scholar] [CrossRef]
- Mehrotra, K.G.; Bhattacharyya, G.K. Confidence intervals with jointly type-II censored samples from two exponential distributions. J. Am. Stat. Assoc. 1982, 77, 441–446. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Rasouli, A. Exact likelihood inference for two exponential populations under joint type-II censoring. Comput. Stat. Data Anal. 2008, 52, 2725–2738. [Google Scholar] [CrossRef]
- Rasouli, A.; Balakrishnan, N. Exact likelihood inference for two exponential populations under joint progressive type-II censoring. Commun. Stat. Theory Methods 2010, 39, 2172–2191. [Google Scholar] [CrossRef]
- Shafaya, A.R.; Balakrishnanbc, N.; Abdel-Atyd, Y. Bayesian inference based on a jointly type-II censored sample from two exponential populations. J. Stat. Comput. Simul. 2014, 84, 2427–2440. [Google Scholar] [CrossRef]
- Mondal, S.; Kundu, D. Bayesian Inference for Weibull Distribution under the Balanced Joint Type-II Progressive Censoring Scheme. Am. J. Math. Manag. Sci. 2019, 39, 56–74. [Google Scholar] [CrossRef]
- Algarni, A.; Almarashi, A.M.; Abd-Elmougod, G.A.; Abo-Eleneen, Z.A. Two compound Rayleigh lifetime distributions in analyses the jointly type-II censoring samples. J. Math. Chem. 2019, 58, 950–966. [Google Scholar] [CrossRef]
- Abushal, T.A.; Soliman, A.A.; Abd-Elmougod, G.A. Statistical inferences of Burr XII lifetime models under joint Type-1 competing risks samples. J. Math. 2021, 2021, 9553617. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Algarni, A.; Daghistani, A.M.; Abd-Elmougod, G.A.; Abdel-Khalek, S.; Raqab, M.Z. Inferences for Joint Hybrid Progressive Censored Exponential Lifetimes under Competing Risk Model. Math. Probl. Eng. 2021, 2021, 3380467. [Google Scholar] [CrossRef]
- Shokr, E.M.; El-Sagheer, R.M.; Khder, M.; El-Desouky, B.S. Inferences for two Weibull Frechet populations under joint progressive type-II censoring with applications in engineering chemistry. Appl. Math. Inf. Sci. 2022, 16, 73–92. [Google Scholar]
- Tolba, A.H.; Abushal, T.A.; Ramadan, D.A. Statistical inference with joint progressive censoring for two populations using power Rayleigh lifetime distribution. Sci. Rep. 2023, 13, 3832. [Google Scholar] [CrossRef]
- Al-Essa, L.A.; Soliman, A.A.; Abd-Elmougod, G.A.; Alshanbari, H.M. Comparative Study with Applications for Gompertz Models under Competing Risks and Generalized Hybrid Censoring Schemes. Aximos 2023, 12, 322. [Google Scholar] [CrossRef]
- David, H.A.; Nagaraja, H.N. Order Statistics, 3rd ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Ng, H.K.T.; Chan, P.S. Comments on: Progressive censoring methodology: An appraisal. Test 2007, 16, 287–289. [Google Scholar] [CrossRef]
- Efron, B. The jackknife, the bootstrap and other resampling plans. In CBMS-NSF Regional Conference Series in Applied Mathematics; Monograph 38, SIAM: Phiadelphia, PA, USA, 1982. [Google Scholar]
- Chen, M.-H.; Shao, Q.-M. Monte Carlo estimation of Bayesian Credible and HPD intervals. J. Comput. Graph. Stat. 1999, 8, 69–92. [Google Scholar]
- Balakrishnan, N.; Sandhu, R.A. A simple simulation algorithm for generating progressively type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
- Nelson, W.-B. Applied Life Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 521. [Google Scholar]
- Alslman, M.; Helu, A. Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring. PLoS ONE 2022, 8, e0277514. [Google Scholar] [CrossRef] [PubMed]
Data 1 | 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.5, 7.35, 8.01, 8.27, 12.06, 31.75, |
32.52, 33.91, 36.71, 72.89 | |
Data 2 | 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.9, 3.67, 3.99, 5.35, 13.77, 25.50 |
Joint data | (0.19,1), (0.35,0), (0.59,0), (0.78,1), (0.96,1), (0.96,0), (0.99,0), (1.31,1), (1.69,0), (1.97,0) |
(2.07,0), (2.58,0), (2.71,0), (2.78,1), (2.9,0), (3.16,1), (3.67,0), (3.99,0), (4.15,1) | |
(4.67,1), (4.85,1), (5.35,2), (6.5,1), (7.35,1), (8.01,1), (8.27,1), (12.06,1), (13.77,0) | |
(25.5,0), (31.75,1), (32.52,1), (33.91,1), (36.71,1), (72.89,1) | |
Joint adaptive | (0.19, 1), (0.35,0), (0.59,0), (0.78,1), (0.96,1), (0.96,0), (0.99,0), (1.69,0) |
type-II HPCS | (1.97,0), (2.07,0), (3.16,1), (3.67,0), (3.99,0), (4.15,1), (4.67,1), (5.35,0), (7.35,1) |
(8.01,1), (13.77,0), (32.52,1), (33.91,1), (36.71,1) |
Pa.s | ML | Bayes | ACI | BCI | HPI |
---|---|---|---|---|---|
1.0222 | 1.6624 | (0.2393, 1.8050) | (0.3412, 1.9925) | (0.6245, 1.7452) | |
0.5903 | 1.4963 | (0.0603, 1.1202) | (0.1074, 1.3542) | (0.4215, 1.6542) | |
0.7525 | 0.6135 | (0.4103, 1.0947) | (0.4555, 1.4221) | (0.5008, 1.1245) | |
1.5822 | 1.0196 | (0.9066, 2.2578) | (0.9325, 2.4478) | (0.7421, 1.4582) |
ML | 0.64018 | 0.445814 | 0.432319 | 1.16091 |
MCMC | 0.793798 | 0.755609 | 0.246514 | 0.45368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Essa, L.A.; Soliman, A.A.; Abd-Elmougod, G.A.; Alshanbari, H.M. Adaptive Type-II Hybrid Progressive Censoring Samples for Statistical Inference of Comparative Inverse Weibull Distributions. Axioms 2023, 12, 973. https://doi.org/10.3390/axioms12100973
Al-Essa LA, Soliman AA, Abd-Elmougod GA, Alshanbari HM. Adaptive Type-II Hybrid Progressive Censoring Samples for Statistical Inference of Comparative Inverse Weibull Distributions. Axioms. 2023; 12(10):973. https://doi.org/10.3390/axioms12100973
Chicago/Turabian StyleAl-Essa, Laila A., Ahmed A. Soliman, Gamal A. Abd-Elmougod, and Huda M. Alshanbari. 2023. "Adaptive Type-II Hybrid Progressive Censoring Samples for Statistical Inference of Comparative Inverse Weibull Distributions" Axioms 12, no. 10: 973. https://doi.org/10.3390/axioms12100973
APA StyleAl-Essa, L. A., Soliman, A. A., Abd-Elmougod, G. A., & Alshanbari, H. M. (2023). Adaptive Type-II Hybrid Progressive Censoring Samples for Statistical Inference of Comparative Inverse Weibull Distributions. Axioms, 12(10), 973. https://doi.org/10.3390/axioms12100973