Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation
Abstract
:1. Introduction and Motivation
1.1. Preliminaries Related to Multiple Erdélyi–Kober (E-K) Fractional Operators
2. Complex Generalized Representation of the Gamma Function and Its Convergence
3. Fourier Transform of Gamma Function Using New Representation and Multiple Erdélyi–Kober (E-K) Fractional Operators with Application in Recently Popular Transforms
3.1. Multiple Erdélyi–Kober (E-K) Fractional Derivatives with Application in Recently Popular Transforms
3.2. Multiple Erdélyi–Kober (E-K) Fractional Integrals with Application in Recently Popular Transforms
3.3. Solution of a Singular Fractional Integral Equation including the Fractional Derivatives of the Delta Function
3.4. New q-Fractional Derivatives Involving Different Functions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volumes I–V. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of gamma function leading to some new identities. Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R.; Kasmani, R.M.; Almutairi, D.K. Distributional Representation of a Special Fox–Wright Function with an Application. Mathematics 2023, 11, 3372. [Google Scholar] [CrossRef]
- Zamanian, A.H. Distribution Theory and Transform Analysis; Dover Publications: New York, NY, USA, 1987. [Google Scholar]
- Osler, T.J. Taylor’s series generalized for fractional derivatives and applications. SIAM J. Math. Anal. 1971, 2, 37–47. [Google Scholar] [CrossRef]
- Makris, N. The Fractional Derivative of the Dirac Delta Function and Additional Results on the Inverse Laplace Transform of Irrational Functions. Fractal Fract. 2021, 5, 18. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Cattani, C. Fractional distributional representation of gamma function and the generalized kinetic equation. Alex. Eng. J. 2023, 82, 577–586. [Google Scholar] [CrossRef]
- Li, C.K.; Li, C.P. Remarks on fractional derivatives of distributions. Tbil. Math. J. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Li, M. Integral Representation of Fractional Derivative of Delta Function. Fractal Fract. 2020, 4, 47. [Google Scholar] [CrossRef]
- Feng, Z.; Ye, L.; Zhang, Y. On the fractional derivative of Dirac delta function and its application. Adv. Math. Phys. 2020, 7, 1842945. [Google Scholar] [CrossRef]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal Fract. 2022, 6, 254. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations. Mathematics 2023, 11, 1060. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some Parametric and Argument Variations of the Operators of Fractional Calculus and Related Special Functions and Integral Transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2004. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier/North-Holland: Amsterdam, The Netherlands, 2006; ISBN 9780444518323. [Google Scholar]
- Srivastava, H.M. An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcendental Functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some New Fractional-Calculus Connections between Mittag–Leffler Functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 273, 53–63. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Unified fractional kinetic equations and a fractional diffusion equation. Astrophys. Space Sci. 2004, 290, 299–310. [Google Scholar] [CrossRef]
- Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E 1995, 51, R848–R851. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Choi, J.; Srivastava, H.M. Solution of a general family of kinetic equations associated with the Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 2018, 23, 455–471. [Google Scholar]
- Wongsantisuk, P.; Ntouyas, S.K.; Passary, D.; Tariboon, J. Hilfer Fractional Quantum Derivative and Boundary Value Problems. Mathematics 2022, 10, 878. [Google Scholar] [CrossRef]
- Srivastava, H.M. Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Niu, H.; Chen, Y.; West, B.J. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? Entropy 2021, 23, 297. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform and distributional representation of the generalized gamma function with some applications. Appl. Math. Comput. 2011, 218, 1084–1088. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Alruban, A. On Modifications of the Gamma Function by Using Mittag-Leffler Function. J. Math. 2021, 2021, 9991762. [Google Scholar] [CrossRef]
- Al-Lail, M.H. A Fourier Transform Representation of the Generalized Hypergeometric Functions with Applications to the Confluent and Gauss Hypergeometric Functions. Ph.D. Thesis, KFUPM, Dhahran, Saudi Arabia, 2015. [Google Scholar]
- Chahma, Y.; Chen, H. Infinitely many high energy solutions for fourth-order elliptic equations with p-Laplacian in bounded domain. J. Math. Comput. SCI-JM 2023, 32, 109–121. [Google Scholar] [CrossRef]
- Abdullah, T.Q.S.; Xiao, H.; Huang, G.; Al-Sadi, W. Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with -Laplacian operator. J. Math. Comput. SCI-JM 2022, 27, 184–195. [Google Scholar] [CrossRef]
- Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685–3701. [Google Scholar] [CrossRef]
Cases of (8) | Diverse Kernels of Non-Integer Transforms [12] |
---|---|
Marichev–Saigo–Maeda (M-S-M) | |
Saigo | |
Erdélyi–Kober (E-K) | |
Riemann–Liouville (R-L) |
n = 3 | M-S-M non-integer-order derivatives |
n = 2 | Saigo fractional-order derivatives |
n = 1 | E-K fractional-order derivatives |
n = 1 | R-L fractional derivatives |
n = 3 | M-S-M fractional integrals |
n = 2 | Saigo fractional integrals |
n = 1 | E-K fractional integrals |
n = 1 | R-L fractional integrals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Srivastava, R.; Kasmani, R.M.; Alharbi, R. Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation. Axioms 2023, 12, 1046. https://doi.org/10.3390/axioms12111046
Tassaddiq A, Srivastava R, Kasmani RM, Alharbi R. Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation. Axioms. 2023; 12(11):1046. https://doi.org/10.3390/axioms12111046
Chicago/Turabian StyleTassaddiq, Asifa, Rekha Srivastava, Ruhaila Md Kasmani, and Rabab Alharbi. 2023. "Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation" Axioms 12, no. 11: 1046. https://doi.org/10.3390/axioms12111046
APA StyleTassaddiq, A., Srivastava, R., Kasmani, R. M., & Alharbi, R. (2023). Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation. Axioms, 12(11), 1046. https://doi.org/10.3390/axioms12111046