Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions
Abstract
:1. Introduction
2. PGF Estimates: Definition and Asymptotic Properties
- (A1)
- Θ is a compact set, where , and for T large enough.
- (A2)
- At the point function
- (A3)
- is a regular matrix.
- (A4)
- is a non-zero matrix, uniformly bounded by the strictly positive ω-integrable function .
- (A5)
- The covariance function of the series
3. PGF Estimations of IID and INAR Time Series
3.1. Estimation of IID Time Series
- is a function that depends (only) on ;
- is a (one-dimensional) unknown parameter;
- is a function on , so that when , .
- Chebyshev polynomials (of the first kind): ;
- Legendre polynomials: ;
- Chebyshev polynomials (of the second kind): .
3.2. Estimation of INAR Time Series
4. Application of the PGF Estimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACF | Auto Correlation Function |
AD test | Anderson–Darling test |
AIC | Akaike Information Criterion |
AN | Asymptotic Normality |
CF | Characteristic Function |
ECF | Empirical Characteristic Function |
IID series | Independent Identical Distributed series |
INAR process | Integer-Valued Autoregressive process |
INMA | Integer Moving Average |
MSEE | Mean Squared Estimating Error |
NIINAR process | Noise-Indicator Integer-Valued Autoregressive process |
NNIV series | Non-Negative Integer-Valued series |
PGF | Probability Generating Function |
PMF | Probability Mass Distribution |
PS | Power Series |
RV | Random Variable |
SLLN | Strong Law of Large Numbers |
YW | Yule–Walker |
References
- Johnson, N.L.; Kemp, A.W.; Kotz, S. Univariate Discrete Distributions, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: Washington, DC, USA, 2005. [Google Scholar]
- Xu, H.-Y.; Xie, M.; Goh, T.N.; Fu, X. A Model for Integer–Valued Time Series With Conditional Overdispersion. Comput. Stat. Data Anal. 2012, 56, 4229–4242. [Google Scholar] [CrossRef]
- Jazi, M.A.; Jones, G.; Lai, C.-D. First-Order Integer Valued AR Processes With Zero Inflated Poisson Innovations. J. Time Ser. Anal. 2012, 33, 954–963. [Google Scholar] [CrossRef]
- Weiß, C.H.; Pollet, P.K. Binomial Autoregressive Processes With Density-Dependent Thinning. J. Time Ser. Anal. 2014, 35, 115–132. [Google Scholar] [CrossRef]
- Graziadei, H.; Lijoi, A.; Lopes, H.F.; Marques, P.C.; Prünster, I. Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model. Entropy 2020, 22, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, W.C.; Ong, S.H.; Atanu, B. Coherent Forecasting for a Mixed Integer-Valued Time Series Model. Mathematics 2022, 10, 2961. [Google Scholar] [CrossRef]
- El-Morshedy, M. A Discrete Linear-Exponential Model: Synthesis and Analysis with Inference to Model Extreme Count Data. Axioms 2022, 11, 531. [Google Scholar] [CrossRef]
- Du, J.-G.; Li, Y. The Integer-Valued Autoregressive (INAR(p)) Model. J. Time Ser. Anal. 1991, 12, 129–142. [Google Scholar]
- Franke, J.; Seligmann, T.H. Conditional Maximum Likelihood Estimates for INAR(1) Processes and Their Application to Modelling Epileptic Seizure Counts. In Developments in Time Series; Chapman & Hall: London, UK, 1993; pp. 310–330. [Google Scholar]
- Latour, A. Existence and Stochastic Structure of a Non-negative Integer-valued Autoregressive Process. J. Time Ser. Anal. 1998, 19, 439–455. [Google Scholar] [CrossRef]
- Silva, I.; Silva, M.E. Asymptotic Distribution of the Yule-Walker Estimator for INAR(p) Processes. Stat. Prob. Lett. 2006, 76, 1655–1663. [Google Scholar] [CrossRef]
- Silva, I.; Silva, M.E. Parameter Estimation for INAR Processes Based on High-Order Statistics. Revstat 2009, 7, 105–117. [Google Scholar]
- Martin, V.L.; Tremayne, A.R.; Jung, R.C. Efficient Method of Moments Estimators for Integer Time Series Models. J. Time Ser. Anal. 2014, 35, 491–516. [Google Scholar] [CrossRef]
- Knight, J.L.; Yu, J. Empirical Characteristic Function in Time Series Estimation. Econom. Theory 2002, 18, 691–721. [Google Scholar] [CrossRef]
- Yu, J. Empirical Characteristic Function Estimation and Its Applications. Econom. Rev. 2004, 23, 93–123. [Google Scholar] [CrossRef]
- Kotchoni, R. Applications of the Characteristic Function-Based Continuum GMM in Finance. Comput. Stat. Data Anal. 2012, 56, 3599–3622. [Google Scholar] [CrossRef] [Green Version]
- Meintanis, S.G.; Swanepoel, J.; Allison, J. The probability weighted characteristic function and goodness-of-fit testing. J. Stat. Plan. Infer. 2014, 146, 122–132. [Google Scholar] [CrossRef]
- Stojanović, V.; Milovanović, G.V.; Jelić, G. Distributional Properties and Parameters Estimation of GSB Process: An Approach Based on Characteristic Functions. ALEA Lat. Am. J. Probab. Math. Stat. 2016, 13, 835–861. [Google Scholar] [CrossRef]
- Esquìvel, M.L. Some Applications of Probability Generating Function Based Methods to Statistical Estimation. Discuss. Math. 2009, 29, 131–153. [Google Scholar] [CrossRef]
- Stojanović, V.; Randjelović, D.; Kuk, K. Noise-Indicator Nonnegative Integer-Valued Autoregressive Time Series of the First Order. Braz. J. Probab. Stat. 2018, 32, 147–171. [Google Scholar] [CrossRef]
- Newey, W.K.; McFadden, D. Large Sample Estimation and Hypothesis Testing. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 1994; Volume 4. [Google Scholar]
- Fuller, W.A. Introduction to Statistical Time Series; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Bourguignon, M.; Vasconcellos, K.L.P. First Order Non-Negative Integer Valued Autoregressive Processes With Power Series Innovations. Braz. J. Probab. Stat. 2015, 29, 71–93. [Google Scholar] [CrossRef]
- Cvetković, A.S.; Milovanović, G.V. The Mathematica Package “Orthogonal Polynomials”. Facta Univ. Ser. Math. Inform. 2004, 19, 17–36. [Google Scholar]
- Brent, R. Algorithms for Minimization Without Derivatives; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Gross, L. Tests for Normality. R Package Version 1.0-2. 2013. Available online: http://CRAN.R-project.org/package=nortest (accessed on 6 December 2022).
- Weiß, C.H. Thinning Operations for Modelling Time Series of Counts—A Survey. Adv. Statist. Anal. 2008, 92, 319–341. [Google Scholar] [CrossRef]
- Billingsley, P. Probability and Measure; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Silva, M.E.; Oliveira, V.L. Difference Equations for the Higher-Order Moments and Cumulants of the INAR(1) Model. J. Time Ser. Anal. 2004, 25, 317–333. [Google Scholar] [CrossRef]
- Jung, R.C.; Ronning, G.; Tremayne, A.R. Estimation in Conditional First Order Autoregression with Discrete Support. Stat. Pap. 2005, 46, 195–224. [Google Scholar] [CrossRef]
- Ristić, M.M.; Nastić, A.S.; Miletić, A.V. A Geometric Time Series Model with Dependent Bernoulli Counting Series. J. Time Ser. Anal. 2013, 34, 466–476. [Google Scholar] [CrossRef]
- Schweer, S.; Weiß, C.H. Compound Poisson INAR(1) Processes: Stochastic Properties and Testing for Over-Dispersion. Comput. Stat. Data Anal. 2014, 77, 267–284. [Google Scholar] [CrossRef]
- Bermúdez, L.; Karlis, D. Multivariate INAR(1) Regression Models Based on the Sarmanov Distribution. Mathematics 2021, 9, 505. [Google Scholar] [CrossRef]
- Li, Q.; Chen, H.; Liu, X. A New Bivariate Random Coefficient INAR(1) Model with Applications. Symmetry 2022, 14, 39. [Google Scholar] [CrossRef]
- Maya, R.; Chesneau, C.; Krishna, A.; Irshad, M.R. Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications. Stats 2022, 5, 755–772. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R.; Chesneau, C.; Nitin, S.L.; Shibu, D.S. On Discrete Poisson–Mirra Distribution: Regression, INAR(1) Process and Applications. Axioms 2022, 11, 193. [Google Scholar] [CrossRef]
- Al-Osh, M.A.; Alzaid, A.A. First-Order Integer-Valued Autoregressive (INAR(1)) Process. J. Time Ser. Anal. 1987, 8, 261–275. [Google Scholar] [CrossRef]
- Alzaid, A.A.; Al-Osh, M.A. An Integer-Valued pth-order Autoregressive Structure (INAR(p)) Process. J. App. Prob. 1990, 27, 314–324. [Google Scholar] [CrossRef]
- Lange, K. Numerical Analysis for Statisticians. In Book Series: Statistics and Computing; Springer: New York, NY, USA, 2001. [Google Scholar]
- Stojanović, V.; Popović, B.Č.; Milovanović, G.V. The Split-SV model. Comput. Statist. Data Anal. 2016, 100, 560–581. [Google Scholar] [CrossRef]
- Vaz, S.; Torres, D.F.M. A Discrete-Time Compartmental Epidemiological Model for COVID-19 with a Case Study for Portugal. Axioms 2021, 10, 314. [Google Scholar] [CrossRef]
- Ghosh, S.; Volpert, V.; Banerjee, M. An Epidemic Model with Time Delay Determined by the Disease Duration. Mathematics 2022, 10, 2561. [Google Scholar] [CrossRef]
- Sivakumar, B.; Deepthi, B. Complexity of COVID-19 Dynamics. Entropy 2022, 24, 50. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Riveros Gavilanes, J.M. First to React Is the Last to Forgive: Evidence from the Stock Market Impact of COVID 19. J. Risk Financ. Manag. 2021, 14, 26. [Google Scholar] [CrossRef]
- Zakharov, V.; Balykina, Y.; Ilin, I.; Tick, A. Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters. Mathematics 2022, 10, 3725. [Google Scholar] [CrossRef]
- Jovanović, M.; Stojanović, V.; Kuk, K.; Popović, B.; Čisar, P. Asymptotic Properties and Application of GSB Process: A Case Study of the COVID-19 Dynamics in Serbia. Mathematics 2022, 10, 3849. [Google Scholar] [CrossRef]
- Stapper, M. Count Data Time Series Modelling in Julia—The CountTimeSeries.jl Package and Applications. Entropy 2021, 23, 666. [Google Scholar] [CrossRef]
- Eliwa, M.S.; Tyagi, A.; Almohaimeed, B.; El-Morshedy, M. Modelling Coronavirus and Larvae Pyrausta Data: A Discrete Binomial Exponential II Distribution with Properties, Classical and Bayesian Estimation. Axioms 2022, 11, 646. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar]
- Hyndman, R. Forecasting Functions for Time Series and Linear Models. R Package Version 7.1. 2016. Available online: http://CRAN.R-project.org/package=forecast (accessed on 9 January 2023).
- Nastić, A.S.; Ristić, M.M.; Bakouch, H.S. A Combined Geometric INAR(p) Model Based on Negative Binomial Thinning. Math. Comput. Model. 2012, 55, 1665–1672. [Google Scholar] [CrossRef]
- Ristić, M.M.; Nastić, A.S.; Bakouch, H.S. Estimation in an Integer-Valued Autoregressive Process With Negative Binomial Marginals (NBINAR(1)). Comm. Stat. Theory Methods 2012, 41, 606–618. [Google Scholar] [CrossRef]
- Weiß, C. INGARCH Models for Count Time Series. In An Introduction to Discrete-Valued Time Series; Weiß, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Reinhart, A. A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications. Stat. Sci. 2018, 33, 299–318. [Google Scholar]
Distributions | ||||||
---|---|---|---|---|---|---|
1. Bernoulli | 1 | ∞ | ||||
2. Binomial | ∞ | |||||
3. Poisson | ∞ | |||||
4. Geometric | 1 | |||||
5. Neg. Binomial | ||||||
6. Pascal |
Statistics | PGF Estimates | ||||||||
---|---|---|---|---|---|---|---|---|---|
Poisson | Min. | 0.4222 | 0.4293 | 0.4267 | |||||
Mean | 0.5006 | 0.4994 | 0.5005 | ||||||
Max. | 0.5967 | 0.6098 | 0.5938 | ||||||
MSEE | 0.0220 | – | 0.0200 | – | 0.0196 | – | |||
0.3849 | – | 0.1965 | – | 0.2911 | – | ||||
p-value | 0.3919 | – | 0.8889 | – | 0.6076 | – | |||
Geometric | Min. | 0.4491 | 0.4520 | 0.4467 | |||||
Mean | 0.5004 | 0.5001 | 0.4996 | ||||||
Max. | 0.5535 | 0.5353 | 0.5580 | ||||||
MSEE | 0.0129 | – | 0.0121 | – | 0.0117 | – | |||
0.4583 | – | 0.2214 | – | 0.2490 | – | ||||
p-value | 0.2627 | – | 0.8307 | – | 0.7467 | – |
Statistics | PGF Estimates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Poisson | Min. | 0.3845 | 0.3606 | 0.3653 | 0.3352 | 0.3710 | 0.3365 | |||||
Mean | 0.5003 | 0.4986 | 0.5002 | 0.5006 | 0.5015 | 0.4951 | ||||||
Max. | 0.6711 | 0.5971 | 0.6948 | 0.6292 | 0.7049 | 0.6251 | ||||||
MSEE | 0.0329 | 0.0350 | – | 0.0364 | 0.0337 | – | 0.0381 | 0.0321 | – | |||
0.7468 | 0.3089 | – | 0.7272 | 0.4153 | – | 0.8609 | 0.4724 | – | ||||
p-value | 0.0515 | 0.5574 | – | 0.0576 | 0.3326 | – | 0.0269 * | 0.2427 | – | |||
Geometric | Min. | 0.3962 | 0.3592 | 0.3673 | 0.3129 | 0.3965 | 0.3199 | |||||
Mean | 0.5002 | 0.4974 | 0.4981 | 0.4977 | 0.4986 | 0.5005 | ||||||
Max. | 0.6071 | 0.6646 | 0.5960 | 0.6037 | 0.6033 | 0.6747 | ||||||
MSEE | 0.0291 | 0.0521 | – | 0.0265 | 0.0446 | – | 0.0271 | 0.0425 | – | |||
0.6155 | 0.8198 | – | 0.3150 | 0.5174 | – | 0.4126 | 0.7898 | – | ||||
p-value | 0.1088 | 0.0340 * | – | 0.5426 | 0.1882 | – | 0.3375 | 0.0403 * | – |
Statistics | Series A | Series B | ||
---|---|---|---|---|
Sample size | 1095 | 990 | ||
Minimum | 0 | 0 | ||
Mode | 6 | 1 | ||
1st Quartile | 4 | 3 | ||
Median | 6 | 9 | ||
Mean | 5.758 | 17.58 | ||
3rd Quartile | 7 | 27 | ||
Maximum | 24 | 79 | ||
St. deviation | 2.428 | 18.48 | ||
Variance | 5.895 | 341.6 | ||
Skewness | 1.797 | 1.159 | ||
Kurtosis | 10.803 | 3.161 | ||
ACF(1) | 0.085 | 0.987 | ||
⋯ | ⋯ | ⋯ | ||
ACF(10) | 0.020 | 0.911 | ||
⋯ | ⋯ | ⋯ | ||
ACF(20) | 0.754 | |||
⋯ | ⋯ | ⋯ | ||
ACF(50) | 0.049 | 0.254 | ||
⋯ | ⋯ | ⋯ | ||
ACF(100) | 0.078 |
Parameters/Statistics | Series A | Series B | |||||
---|---|---|---|---|---|---|---|
5.8069 | 5.8218 | 5.8176 | 0.1812 | 0.1808 | 0.1810 | ||
– | – | – | 0.9872 | 0.9865 | 0.9871 | ||
MSEE | 0.0726 | 0.0789 | 0.0771 | 0.0221 | 0.0288 | 0.0233 | |
AIC | 4.5992 | 4.6023 | 4.6016 | 5.3035 | 5.3041 | 5.3042 | |
−0.3641 | 0.1039 | 0.0974 | 0.5855 | 0.7797 | 0.6456 | ||
p-value | 0.3579 | 0.5414 | 0.5388 | 0.7208 | 0.7821 | 0.7406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, V.; Ljajko, E.; Tošić, M. Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions. Axioms 2023, 12, 112. https://doi.org/10.3390/axioms12020112
Stojanović V, Ljajko E, Tošić M. Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions. Axioms. 2023; 12(2):112. https://doi.org/10.3390/axioms12020112
Chicago/Turabian StyleStojanović, Vladica, Eugen Ljajko, and Marina Tošić. 2023. "Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions" Axioms 12, no. 2: 112. https://doi.org/10.3390/axioms12020112
APA StyleStojanović, V., Ljajko, E., & Tošić, M. (2023). Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions. Axioms, 12(2), 112. https://doi.org/10.3390/axioms12020112