Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations
Abstract
:1. Introduction
2. Families of Exact Solutions
3. Qualitative Behavior for System (2) in Dissipative Case
3.1. Local Analysis
3.2. Global Behavior
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Coordinates of the First and the Second Equilibrium Points and Values of Lyapunov Exponents
Appendix B. Eigenvalues of the First and the Second Equilibrium Points
Appendix C. Values of ; see (6)
Appendix D. Families of Exact Solutions
References
- Letellier, C.; Rossler, O.E. Hyperchaos. Scholarpedia 2007, 2, 1936. [Google Scholar] [CrossRef]
- Nikolov, S.; Clodong, S. Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems. Chaos Solitons Fractals 2004, 22, 407–431. [Google Scholar] [CrossRef]
- Nikolov, S. Estimating of bifurcations and chaotic behavior in a four-dimensional system. J. Calcutta Math. Soc. 2006, 2, 17–28. [Google Scholar]
- Panchev, S. Theory of Chaos; Bulgarian Acad. Press: Sofia, Bulgaria, 2001. [Google Scholar]
- Peng, J.; Ding, E.; Ding, M.; Yang, W. Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 1996, 76, 904. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Swift, J.; Swinney, H.; Vastano, J. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Yousefpour, A.; Wei, Z.; Alcaraz, R.; Bekiros, S. A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization. Chaos Solitons Fractals 2019, 126, 66–77. [Google Scholar] [CrossRef]
- Pavlov, A.; Pavlova, O.; Mohammad, Y.; Kurths, J. Characterization of the chaos-hyperchaos transition based on return times. Phys. Rev. E 2015, 91, 022921. [Google Scholar] [CrossRef]
- Nikolov, S.; Clodong, S. Hyperchaos-chaos-hyperchaos transition in modified Rossler type systems. Chaos Solitons Fractals 2006, 28, 252–263. [Google Scholar] [CrossRef]
- Alligood, K.; Sauer, T.; Yorke, J. Chaos, An Introduction to Dynamical System; Springer: New York, NY, USA, 1996. [Google Scholar]
- Rössler, O. An equation for hypechaos. Phys. Lett. A 1979, 71A, 155–157. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M. A hyperchaos generalized from Lorenz system. Phys. A Stat. Mech. Its Appl. 2008, 387, 3751–3758. [Google Scholar] [CrossRef]
- Stankevich, N.; Kazakov, A.; Gonchenko, S. Scenarios of hyperchaos occurence in 4D Rössler system. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 123129. [Google Scholar] [CrossRef]
- Starkov, K. On the ultimate dynamics of the four-dimensional Rössler system. Int. J. Bifurc. Chaos 2014, 24, 1450149. [Google Scholar] [CrossRef]
- Szczepaniak, A.; Macek, W. Unstable manifolds for the hyperchaotic Rossler system. Phys. Lett. A 2008, 372, 2423–2427. [Google Scholar] [CrossRef]
- Barrio, R.; Martinez, M.; Serrano, S.; Wilczak, D. When chaos meets hyperchaos: 4D Rossler model. Phys. Lett. A 2015, 379, 2300–2305. [Google Scholar] [CrossRef]
- Kuptsov, P.; Kuznetsov, S. Route to hyperbolic hyperchaos in a nonautonomous time-delay system. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 113113. [Google Scholar] [CrossRef] [PubMed]
- Stankevich, N.; Volkov, E. Chaos–hyperchaos transition in three identical quorum-sensing mean-field coupled ring oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 103112. [Google Scholar] [CrossRef] [PubMed]
- Sataev, I.; Stankevich, N. Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 023140. [Google Scholar] [CrossRef]
- Li, Q.; Tang, S.; Yang, X. Hyperchaotic set in continuous chaos–hyperchaos transition. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3718–3734. [Google Scholar] [CrossRef]
- Karatetskaia, E.; Shykhmamedov, A.; Kazakov, A. Shilnikov attractors in three-dimensional orientation-reversing maps. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 011102. [Google Scholar] [CrossRef]
- Lai, Q.; Norouzi, B.; Liu, F. Dynamic analysis, circuit realization, control desing and image encryption application of an extended Lü system with coexisting attractors. Chaos Solitons Fractals 2018, 114, 230–245. [Google Scholar] [CrossRef]
- Meyer, T.; Bünner, M.; Kittel, A.; Parisi, J. Hyperchaos in the generalized Rössler system. Phys. Rev. E 1997, 56, 5069–5082. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, S. Transitional processes in some modified Rossler type dynamical systems. Comptes Rendus L’academie Bulg. Sci. 2004, 57, 45–52. [Google Scholar]
- Schuster, H. Deterministic Chaos: An introduction; Physik-Verlag: Berlin, Germany, 1984. [Google Scholar]
- Kapitaniak, T.; Maistrenko, Y.; Popovych, S. Chaos-hyperchaos transition. Phys. Rev. E 2000, 62, 1972–1976. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.; Smale, S.; Devaney, R. Differential Equations, Dynamical Systems, and An Introduction to Chaos; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Singh, S.; Han, S.; Lee, S.M. Adaptive single input sliding mode control for hybrid-synchronization of uncertain hyperchaotic Lu systems. J. Frankl. Inst. 2021, 358, 7468–7484. [Google Scholar] [CrossRef]
- Nemytskii, V.; Stepanov, V. Qualitative Theory of Differential Equations; Princeton University Press: Princeton, NJ, USA, 1960. [Google Scholar]
- Mints, R. The character of certain types of complex equilibrium state in n-dimensional spaces. DAN USSR 1962, 147, 31–33. [Google Scholar]
- Gavrilov, N. On n-dimensional dynamic systems close to the systems with non-rough homoclinic curve. DAN USSR 1973, 212, 276–279. [Google Scholar]
- Wiggins, S. Global Bifurcations and Chaos: Analytical Methods; Springer: New York, NY, USA, 1988. [Google Scholar]
- Cid-Montiel, L.; Llibre, J.; Stoica, C. Zero-Hopf bifurcation in a hyperchaotic Lorenz system. Nonlinear Dyn. 2014, 75, 561–566. [Google Scholar] [CrossRef]
- Champney, A.; Kirk, V. The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities. Phys. D Nonlinear Phenom. 2004, 195, 77–105. [Google Scholar] [CrossRef]
- Gonchenko, S.; Turaev, D. On three types of dynamics and notation of attractor. Proc. Steklov Inst. Math. 2017, 297, 116–137. [Google Scholar] [CrossRef]
- Gonchenko, S.; Gonchenko, A.; Kozlov, A. Three types of attractors and mixed dynamics of nonholonomic models of rigid body motion. Proc. Steklov Inst. Math. 2020, 308, 125–140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolov, S.G.; Vassilev, V.M. Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations. Axioms 2023, 12, 185. https://doi.org/10.3390/axioms12020185
Nikolov SG, Vassilev VM. Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations. Axioms. 2023; 12(2):185. https://doi.org/10.3390/axioms12020185
Chicago/Turabian StyleNikolov, Svetoslav G., and Vassil M. Vassilev. 2023. "Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations" Axioms 12, no. 2: 185. https://doi.org/10.3390/axioms12020185
APA StyleNikolov, S. G., & Vassilev, V. M. (2023). Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations. Axioms, 12(2), 185. https://doi.org/10.3390/axioms12020185