Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data
Abstract
:1. Introduction
2. Assumptions and Likelihood Function
3. Sieve Maximum Likelihood Estimation
- Step 1: obtain by maximizing the log marginal likelihood function under the observation data on the ’s;
- Step 2: obtain by maximizing the log marginal likelihood function under the observation data on the ’s;
- Step 3: obtain the initial estimates of and by maximizing the joint sieve log likelihood function .
4. A Simulation Study
5. An Illustration
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
AREDS | Age-related Eye Disease Study |
AMD | Age-related macular degeneration |
a.s. | almost surely |
Appendix A. Proof of Asymptotic Properties
References
- Sun, J. The Statistical Analysis of Interval-Censored Failure Time Data; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Lin, D.Y.; Oakes, D.; Ying, Z. Additive hazards regression with current status data. Biometrika 1998, 85, 289–298. [Google Scholar] [CrossRef]
- Martinussen, T.; Scheike, T.H. Efficient estimation in additive hazards regression with current status data. Biometrika 2002, 89, 649–658. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, J.; Sun, L. Estimation of the additive hazards model with linear inequality restrictions based on current status data. Commun. Stat.-Theory Methods 2022, 51, 68–81. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y.; Sun, J. A new method for regression analysis of interval-censored data with the additive hazards model. J. Korean Stat. Soc. 2020, 49, 1131–1147. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Zhu, L.; Li, N.; Sun, J. Estimation of the additive hazards model with interval-censored data and missing covariates. Can. J. Stat. 2020, 48, 499–517. [Google Scholar] [CrossRef]
- Wang, T.B.; Yopadhyay, D.; Sinha, S. Efficient estimation of the additive risks model for interval-censored data. arXiv 2022, arXiv:2203.09726. [Google Scholar]
- Tong, X.; Chen, M.H.; Sun, J. Regression analysis of multivariate interval-censored failure time data with application to tumorigenicity experiments. Biom. J. 2008, 50, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Cai, J. Additive hazards model with multivariate failure time data. Biometrika 2004, 91, 801–818. [Google Scholar] [CrossRef]
- Liu, P.; Song, S.; Zhou, Y. Semiparametric additive frailty hazard model for clustered failure time data. Can. J. Stat. 2022, 50, 549–571. [Google Scholar] [CrossRef]
- Zeng, D.; Cai, J. Additive transformation models for clustered failure time data. Lifetime Data Anal. 2010, 16, 333–352. [Google Scholar] [CrossRef]
- Yu, M.; Du, M. Regression analysis of multivariate interval-censored failure time data under transformation model with informative censoring. Mathematics 2022, 10, 3257. [Google Scholar] [CrossRef]
- Sun, T.; Ding, Y. Copula-based semiparametric regression method for bivariate data under general interval censoring. Biostatistics 2021, 22, 315–330. [Google Scholar] [CrossRef]
- Marra, G.; Radice, R. Copula link-based additive models for right-censored event time data. J. Am. Stat. Assoc. 2020, 115, 886–895. [Google Scholar] [CrossRef]
- Petti, D.; Eletti, A.; Marra, G.; Radice, R. Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme. Comput. Stat. Data Anal. 2022, 175, 107550. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, L.; Huang, J.Z. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data. Bernoulli 2014, 20, 141–163. [Google Scholar] [CrossRef]
- Lu, X.; Song, P.X.K. Efficient estimation of the partly linear additive hazards model with current status data. Scand. J. Stat. 2015, 42, 306–328. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Zhang, S. An efficient estimation for the parameter in additive partially linear models with missing covariates. J. Korean Stat. Soc. 2020, 49, 779–801. [Google Scholar] [CrossRef]
- Lee, C.Y.; Wong, K.Y.; Lam, K.F.; Xu, J. Analysis of clustered interval-censored data using a class of semiparametric partly linear frailty transformation models. Biometrics 2022, 78, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ren, F. Partially linear additive hazards regression for clustered and right censored data. Bulletin of Informatics and Cybernetics 2022, 54, 1–14. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Nelson, R.B. An Introduction to Copulas; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Joe, H. Multivariate Models and Dependence Concepts; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Clayton, D.G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978, 65, 141–151. [Google Scholar] [CrossRef]
- Gumble, E.J. Bivariate exponential distributions. J. Am. Statitical Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, T.; Sun, J. A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. J. Am. Stat. Assoc. 2017, 112, 664–672. [Google Scholar] [CrossRef]
- Carnicer, J.M.; Pen˜a, J.M. Shape preserving representations and optimality of the bernstein basis. Adv. Comput. Math. 1993, 1, 173–196. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Burnham, K.P.; Anderson, D.R. Practical Use of the Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 1993; pp. 75–117. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. The age-related eye disease study (AREDS): Design implications AREDS report no. 1. Control. Clin. Trials 1999, 20, 573. [Google Scholar] [CrossRef]
- Sun, T.; Ding, Y. CopulaCenR: Copula based regression models for bivariate censored data in R. R J. 2020, 12, 266. [Google Scholar] [CrossRef]
- Huang, J. Efficient estimation for the proportional hazards model with interval censoring. Ann. Stat. 1996, 24, 540–568. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, L.; Huang, J. A spline-based semiparametric maximum likelihood estimation method for the cox model with interval-censored data. Scand. J. Stat. 2010, 37, 338–354. [Google Scholar] [CrossRef]
- Huang, J.; Rossini, A. Sieve estimation for the proportional-odds failure-time regression model with interval censoring. J. Am. Stat. Assoc. 1997, 92, 960–967. [Google Scholar] [CrossRef]
- Wen, C.C.; Chen, Y.H. A frailty model approach for regression analysis of bivariate interval-censored survival data. Stat. Sin. 2013, 23, 383–408. [Google Scholar] [CrossRef]
- Van der Vaart, A.; Wellner, J. Weak Convergence and Empirical Processes; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Shen, X.; Wong, W.H. Convergence rate of sieve estimates. Ann. Stat. 1994, 22, 580–615. [Google Scholar] [CrossRef]
- Lorentz, G.G. Bernstein Polynomials; American Mathematical Society: Providence, RI, USA, 2013. [Google Scholar]
n | Bias | SSE | ESE | CP | Bias | SSE | ESE | CP | ||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 20 | 0 | −0.047 | 1.611 | 2.702 | 1.000 | −0.145 | 0.477 | 2.262 | 0.991 |
0.5 | 0.029 | 1.747 | 3.164 | 0.998 | −0.119 | 0.541 | 1.842 | 0.987 | ||
50 | 0 | 0.034 | 0.692 | 0.831 | 0.978 | −0.061 | 0.276 | 0.304 | 0.982 | |
0.5 | 0.021 | 0.642 | 0.806 | 0.988 | −0.048 | 0.286 | 0.303 | 0.977 | ||
100 | 0 | −0.008 | 0.468 | 0.477 | 0.952 | −0.022 | 0.145 | 0.172 | 0.978 | |
0.5 | 0.009 | 0.469 | 0.498 | 0.965 | −0.015 | 0.157 | 0.179 | 0.975 | ||
300 | 0 | −0.004 | 0.254 | 0.254 | 0.949 | −0.008 | 0.072 | 0.079 | 0.959 | |
0.5 | −0.007 | 0.271 | 0.263 | 0.940 | 0.003 | 0.073 | 0.081 | 0.961 | ||
400 | 0 | 0.003 | 0.219 | 0.220 | 0.951 | −0.011 | 0.063 | 0.065 | 0.956 | |
0.5 | −0.005 | 0.237 | 0.228 | 0.940 | −0.000 | 0.061 | 0.067 | 0.958 | ||
0.6 | 20 | 0 | −0.080 | 1.718 | 3.595 | 1.000 | −0.051 | 0.413 | 2.797 | 0.979 |
0.5 | 0.035 | 1.751 | 3.564 | 1.000 | −0.029 | 0.403 | 2.639 | 0.979 | ||
50 | 0 | −0.023 | 0.578 | 0.749 | 0.983 | 0.015 | 0.177 | 0.233 | 0.980 | |
0.5 | 0.025 | 0.576 | 0.799 | 0.990 | −0.012 | 0.202 | 0.236 | 0.965 | ||
100 | 0 | −0.012 | 0.367 | 0.393 | 0.962 | 0.013 | 0.103 | 0.132 | 0.954 | |
0.5 | 0.020 | 0.365 | 0.418 | 0.973 | 0.007 | 0.114 | 0.137 | 0.958 | ||
300 | 0 | −0.007 | 0.201 | 0.206 | 0.956 | −0.009 | 0.064 | 0.066 | 0.933 | |
0.5 | 0.015 | 0.206 | 0.215 | 0.962 | 0.005 | 0.064 | 0.069 | 0.931 | ||
400 | 0 | 0.006 | 0.178 | 0.177 | 0.949 | −0.008 | 0.055 | 0.056 | 0.932 | |
0.5 | 0.011 | 0.188 | 0.184 | 0.946 | 0.001 | 0.055 | 0.057 | 0.945 |
n | Bias | SSE | ESE | CP | Bias | SSE | ESE | CP | ||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 20 | 0 | −0.045 | 1.737 | 2.162 | 1.000 | −0.138 | 0.485 | 2.536 | 0.983 |
0.5 | 0.074 | 1.922 | 2.941 | 0.997 | −0.108 | 0.435 | 1.260 | 0.987 | ||
50 | 0 | 0.045 | 0.732 | 0.919 | 0.983 | −0.052 | 0.215 | 0.249 | 0.993 | |
0.5 | 0.076 | 0.767 | 0.961 | 0.989 | −0.046 | 0.209 | 0.248 | 0.985 | ||
100 | 0 | −0.010 | 0.509 | 0.531 | 0.956 | −0.024 | 0.122 | 0.149 | 0.971 | |
0.5 | 0.027 | 0.511 | 0.552 | 0.967 | −0.019 | 0.120 | 0.145 | 0.979 | ||
300 | 0 | −0.009 | 0.280 | 0.285 | 0.950 | −0.013 | 0.060 | 0.066 | 0.956 | |
0.5 | −0.013 | 0.296 | 0.296 | 0.947 | −0.005 | 0.057 | 0.064 | 0.968 | ||
400 | 0 | −0.004 | 0.247 | 0.245 | 0.948 | −0.010 | 0.052 | 0.055 | 0.960 | |
0.5 | −0.016 | 0.252 | 0.253 | 0.951 | −0.003 | 0.056 | 0.057 | 0.956 | ||
0.6 | 20 | 0 | 0.157 | 1.767 | 2.243 | 1.000 | −0.046 | 0.361 | 1.798 | 0.974 |
0.5 | 0.195 | 2.134 | 2.373 | 0.997 | −0.034 | 0.329 | 0.636 | 0.972 | ||
50 | 0 | 0.034 | 0.608 | 0.815 | 0.989 | −0.029 | 0.158 | 0.208 | 0.984 | |
0.5 | 0.025 | 0.632 | 0.843 | 0.979 | −0.018 | 0.170 | 0.237 | 0.984 | ||
100 | 0 | −0.008 | 0.403 | 0.435 | 0.965 | −0.020 | 0.096 | 0.116 | 0.969 | |
0.5 | 0.028 | 0.417 | 0.449 | 0.963 | 0.014 | 0.095 | 0.118 | 0.970 | ||
300 | 0 | −0.003 | 0.222 | 0.225 | 0.956 | −0.016 | 0.052 | 0.057 | 0.960 | |
0.5 | 0.020 | 0.231 | 0.234 | 0.953 | −0.010 | 0.057 | 0.058 | 0.956 | ||
400 | 0 | −0.001 | 0.199 | 0.195 | 0.957 | −0.018 | 0.046 | 0.048 | 0.936 | |
0.5 | 0.011 | 0.195 | 0.201 | 0.946 | −0.006 | 0.050 | 0.052 | 0.952 |
Param | True Value | Bias | SSE | ESE | CP | Bias | SSE | ESE | CP |
---|---|---|---|---|---|---|---|---|---|
0 | 0.010 | 0.457 | 0.433 | 0.950 | 0.007 | 0.318 | 0.299 | 0.948 | |
0 | 0.010 | 0.571 | 0.550 | 0.947 | 0.007 | 0.392 | 0.380 | 0.947 | |
0.3 | −0.009 | 0.089 | 0.103 | 0.963 | −0.003 | 0.064 | 0.065 | 0.936 | |
0.1 | −0.007 | 0.316 | 0.321 | 0.959 | 0.006 | 0.218 | 0.221 | 0.953 | |
0.1 | −0.009 | 0.532 | 0.557 | 0.954 | 0.006 | 0.386 | 0.385 | 0.951 | |
0.3 | −0.005 | 0.092 | 0.105 | 0.967 | −0.003 | 0.063 | 0.066 | 0.943 | |
0 | −0.015 | 0.244 | 0.258 | 0.960 | −0.009 | 0.176 | 0.177 | 0.948 | |
0 | −0.015 | 0.461 | 0.448 | 0.938 | −0.004 | 0.300 | 0.308 | 0.947 | |
0.6 | −0.001 | 0.081 | 0.083 | 0.931 | −0.006 | 0.056 | 0.058 | 0.949 | |
0.1 | −0.003 | 0.257 | 0.261 | 0.955 | 0.003 | 0.183 | 0.179 | 0.945 | |
0.1 | −0.003 | 0.434 | 0.452 | 0.964 | 0.003 | 0.316 | 0.309 | 0.941 | |
0.6 | 0.002 | 0.080 | 0.084 | 0.931 | 0.001 | 0.055 | 0.056 | 0.938 |
n | Bias | SSE | ESE | CP | Bias | SSE | ESE | CP | ||
---|---|---|---|---|---|---|---|---|---|---|
200 | 0.3 | 0 | −0.016 | 0.265 | 0.270 | 0.946 | −0.025 | 0.098 | 0.113 | 0.974 |
0.5 | 0.027 | 0.279 | 0.286 | 0.948 | −0.012 | 0.098 | 0.117 | 0.970 | ||
1 | 0.023 | 0.301 | 0.310 | 0.954 | −0.007 | 0.102 | 0.123 | 0.963 | ||
0.6 | 0 | 0.025 | 0.231 | 0.234 | 0.942 | −0.016 | 0.090 | 0.095 | 0.940 | |
0.5 | 0.046 | 0.233 | 0.243 | 0.957 | −0.008 | 0.092 | 0.094 | 0.948 | ||
1 | 0.042 | 0.259 | 0.265 | 0.945 | −0.010 | 0.093 | 0.095 | 0.936 | ||
400 | 0.3 | 0 | 0.006 | 0.222 | 0.204 | 0.945 | −0.004 | 0.060 | 0.070 | 0.957 |
0.5 | 0.026 | 0.203 | 0.198 | 0.944 | −0.003 | 0.068 | 0.071 | 0.959 | ||
1 | 0.008 | 0.207 | 0.214 | 0.954 | 0.003 | 0.070 | 0.074 | 0.953 | ||
0.6 | 0 | 0.020 | 0.159 | 0.165 | 0.953 | −0.010 | 0.062 | 0.062 | 0.941 | |
0.5 | 0.038 | 0.155 | 0.163 | 0.952 | −0.003 | 0.060 | 0.062 | 0.943 | ||
1 | 0.028 | 0.182 | 0.183 | 0.946 | 0.005 | 0.061 | 0.063 | 0.936 |
Bernstein Polynomials | EST | ESE | p-Value | EST | ESE |
---|---|---|---|---|---|
0.041 | 0.009 | <0.000 | 0.473 | 0.043 | |
0.046 | 0.008 | <0.000 | 0.416 | 0.056 | |
0.034 | 0.008 | <0.000 | 0.389 | 0.048 | |
0.024 | 0.009 | 0.011 | 0.388 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, S.; Hu, T.; Sun, J. Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data. Axioms 2023, 12, 198. https://doi.org/10.3390/axioms12020198
Zhang X, Zhao S, Hu T, Sun J. Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data. Axioms. 2023; 12(2):198. https://doi.org/10.3390/axioms12020198
Chicago/Turabian StyleZhang, Ximeng, Shishun Zhao, Tao Hu, and Jianguo Sun. 2023. "Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data" Axioms 12, no. 2: 198. https://doi.org/10.3390/axioms12020198
APA StyleZhang, X., Zhao, S., Hu, T., & Sun, J. (2023). Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data. Axioms, 12(2), 198. https://doi.org/10.3390/axioms12020198