Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode
Abstract
:1. Introduction
2. The Boltzmann–Wigner Transport Equation
3. The Signed Particle Monte Carlo Method
4. The Resonant Tunneling Diode
5. The Electrothermal Signed Particle Monte Carlo Method
- The initial SPMC iteration is run at a room temperature of 300 K for a few ps, in order to reach a steady-state;
- As the steady state is reached, electronic parameters are sampled for typically 15 ps, in order to evaluate the heat generation rate ;
- The lattice temperature is obtained by solving the steady-state heat diffusion equationbeing the thermal conductivity in GaAs;
- We repeat this procedure until convergence is reached.
- Counting the phonon number.We introduce the quantity [22]
- using the integrated probability scattering function.Then, the heat generation rate is
6. Numerical Results
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muscato, O.; Di Stefano, V. Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A Math. Theor. 2011, 44, 105501. [Google Scholar] [CrossRef]
- Mascali, G. Exploitation of the Maximum Entropy Principle in the Study of Thermal Conductivity of Silicon, Germanium and Graphene. Energies 2022, 15, 4718. [Google Scholar] [CrossRef]
- Sadi, T.; Kensal, R.; Pilgrim, N. Simulation of Electron Transport in InGaAs/AlGaAs HEMTs Using an Electrothermal Monte Carlo Method. IEEE Trans. Electr. Dev. 2006, 53, 1768–1774. [Google Scholar] [CrossRef]
- Sadi, T.; Kensal, R.W.; Pilgrim, N.; Thobel, J.L.; Dessenne, F. Monte Carlo study of self-heating in nanoscale devices. J. Comput. Electr. 2012, 11, 118–128. [Google Scholar] [CrossRef]
- Muscato, O.; Di Stefano, V.; Wagner, W. A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math. Appl. 2013, 65, 520–527. [Google Scholar] [CrossRef]
- Zhan, Z.; Colomes, E.; Oriols, X. Unphysical features in the application of the Boltzmann collision operator in the time-dependent modeling of quantum transport. J. Comput. Electron. 2016, 15, 1206–1218. [Google Scholar] [CrossRef] [Green Version]
- Villani, M.; Oriols, X. Can Wigner distribution functions with collisions satisfy complete positivity and energy conservation? J. Comput. Electron. 2021, 20, 2232–2244. [Google Scholar] [CrossRef]
- Shao, S.; Lu, T.; Cai, W. Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport. Comm. Comput. Phys. 2011, 9, 711–739. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, Z.; Shao, S. An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 2016, 38, B491–B520. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, Z.; Shao, S. A higher-order accurate operator splitting spectral method for the Wigner–Poisson system. J. Comput. Electron. 2022, 21, 756–770. [Google Scholar]
- Dorda, A.; Schürrer, F. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comp. Electr. 2015, 284, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Shin, M. Quantum Transport Simulation of Nanowire Resonant Tunneling Diodes Based on a Wigner Function Model With Spatially Dependent Effective Masses. IEEE Trans. Nanotech. 2017, 16, 1028–1036. [Google Scholar] [CrossRef]
- de Put, M.L.V.; Soree, B.; Magnus, W. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field. J. Comp. Phys. 2017, 350, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Nedjalkov, M.; Kosina, H.; Selberherr, S.; Ringhofer, C.; Ferry, D.K. Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 2004, 70, 115319. [Google Scholar] [CrossRef] [Green Version]
- Benam, M.; Ballicchia, M.; Weinbub, J.; Selberherr, S.; Nedjalkov, M. A computational approach for investigating Coulomb interaction using Wigner–Poisson coupling. J. Comput. Electr. 2021, 20, 775–784. [Google Scholar] [CrossRef]
- Muscato, O.; Wagner, W. A class of stochastic algorithms for the Wigner equation. SIAM J. Sci. Comput. 2016, 38, A1438–A1507. [Google Scholar] [CrossRef] [Green Version]
- Muscato, O.; Wagner, W. A stochastic algorithm without time discretization error for the Wigner equation. Kin. Rel. Model. 2019, 12, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Muscato, O. Wigner ensemble Monte Carlo simulation without splitting error of a GaAs resonant tunneling diode. J. Comp. Electr. 2021, 20, 2062–2069. [Google Scholar] [CrossRef]
- Querlioz, D.; Dollfus, P. The Wigner Monte Carlo Method for Nanoelectronic Devices; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lundstrom, M. Fundamentals of Carrier Transport; Cambridge Univ. Press: Cambridge, UK, 2000. [Google Scholar]
- Shifren, L.; Ringhofer, C.; Ferry, D. A Wigner Function-Based Quantum Ensemble Monte Carlo Study of a Resonant Tunneling Diode. IEEE Trans. Electr. Dev. 2003, 50, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Pop, E.; Sinha, S.; Goodson, K. Heat generation and transport in nanometer scale transistors. Proc. IEEE 2006, 94, 1587–1601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muscato, O. Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode. Axioms 2023, 12, 216. https://doi.org/10.3390/axioms12020216
Muscato O. Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode. Axioms. 2023; 12(2):216. https://doi.org/10.3390/axioms12020216
Chicago/Turabian StyleMuscato, Orazio. 2023. "Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode" Axioms 12, no. 2: 216. https://doi.org/10.3390/axioms12020216
APA StyleMuscato, O. (2023). Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode. Axioms, 12(2), 216. https://doi.org/10.3390/axioms12020216