Non-Parametric Hypothesis Testing for Unknown Aged Class of Life Distribution Using Real Medical Data
Abstract
:1. Introduction
2. Exponentiality Departure Measure
2.1. Testing Exponentiality versus UBAC2L Class of Complete Data
2.2. Monte Carlo Null Distribution Critical Points
2.3. Pittman Asymptotic Relative Efficiency
2.4. Power Estimates for Different Alternatives
2.5. Applications for Complete Data
3. Testing Exponentiality for Censored Data
3.1. Test for UBAC2L in Case of Right-Censored Data
3.2. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IFR | Increasing failure rate. |
IFRA | Increasing failure rate average. |
UBA | Used better than age. |
UBAC | Used better than age in convex order. |
UBAC2 | Used better than age in concave order. |
UBAC2L | Laplace transform for used better than age in concave order. |
References
- Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models; Hold, Reinhart and Wiston, Inc.: Silver Spring, MD, USA, 1981. [Google Scholar]
- Deshpande, J.V.; Kochar, S.C.; Singh, H. Aspects of positive aging. J. Appl. Probab. 1986, 23, 748–758. [Google Scholar] [CrossRef]
- Klefsjo, B. The HNBUE and HNWUE classes of life distribution. Naval Res. Logist. 1982, 29, 331–344. [Google Scholar] [CrossRef]
- Ahmad, I.A. Some properties of classes of life distributions with unknown age. Stat. Probab. Lett. 2004, 9, 333–342. [Google Scholar] [CrossRef]
- Ali, N.S.A. On the Properties of the UBAC(2) Class of Life Distributions. J. Test. Eval. 2018, 46, 730–735. [Google Scholar] [CrossRef]
- Abu-Youssef, S.E.; El-Toony, A.A. A New Class of Life Distribution based on Laplace Transform and It’s Applications. Inf. Sci. Lett. 2022, 11, 355–362. [Google Scholar]
- Ahmad, I.A. Moments inequalities of aging families with hypotheses testing applications. J. Stat. Plan. Inference 2001, 92, 121–132. [Google Scholar] [CrossRef]
- Rolski, T. Mean residual life. Bull. Int. Stat. Inst. 1975, 4, 266–270. [Google Scholar]
- Mahmoud, M.A.W.; Diab, L.S. On testing exponentiality against HNRBUE based on a goodness of fit. Int. J. Rel. Appl. 2007, 8, 27–39. [Google Scholar]
- Abu-Youssef, S.E.; Ali, N.S.A.; Bakr, M.E. Non-parametric testing for unknown age (UBAL) class of life distribution. J. Test. Eval. 2019, 48, 4576–4587. [Google Scholar]
- Ghosh, S.; Mitra, M. A new test for exponentiality against HNBUE alternatives. Commun. Stat. Theor Meth. 2020, 49, 27–43. [Google Scholar] [CrossRef]
- Mahmoud, M.A.W.; Hassan, E.M.A.; Gadallah, A.M. On NRBUL Class of Life Distributions. J. Egypt. Math. Soc. 2018, 26, 483–490. [Google Scholar] [CrossRef]
- Navarro, J.; Pellerey, F. Preservation of ILR and IFR aging classes in sums of dependent random variables. Appl. Stoch. Models Bus. Ind. 2022, 38, 240–261. [Google Scholar] [CrossRef]
- Navarro, J. Preservation of DMRL and IMRL aging classes under the formation of order statistics and coherent systems. Stat. Probab. Lett. 2018, 137, 264–268. [Google Scholar] [CrossRef]
- Gadallah, A.M. Testing EBUmgf Class of Life Distributions based on Laplace Transform Technique. J. Stat. Appl. Probab. 2017, 6, 471–477. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Abu-Youssef, S.E.; Sadek, A.; Omar, K.M.; Etman, W.B.H. Characterizations and testing NBRUL class of life distributions based on Laplace transform technique. J. Stat. Appl. Probab. 2022, 11, 75–89. [Google Scholar]
- Atallah, M.A.; Mahmoud, M.A.W.; Alzahrani, B.M. A new test for exponentiality versus NBUmgf life distribution based on Laplace transform. Qual. Reliab. Eng. Int. 2014, 30, 1353–1359. [Google Scholar] [CrossRef]
- Lee, A.J. U-Statistics Theory and Practice; Marcel Dekker, Inc.: New York, NY, USA, 1990. [Google Scholar]
- Ahmad, I.A.; Alwasel, I.A.; Mugdadi, A.R. A goodness of fit approach to major life testing problems. Int. J. Reliab. Appl. 2001, 2, 81–97. [Google Scholar]
- Proschan, F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963, 5, 375–383. [Google Scholar] [CrossRef]
- Engelhardt, M.; Bain, L.J.; Wright, F.T. Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 1981, 23, 251–256. [Google Scholar] [CrossRef]
- Abbas, K.; Hussain, Z.; Rashid, N.; Ali, A.; Taj, M.; Khan, S.A.; Manzoor, S.; Khalil, U.; Khan, D.M. Bayesian Estimation of Gumbel Type-II Distribution under Type-II Censoring with Medical Applications. J. Comput. Math. Methods Med. 2020, 7, 1876073. [Google Scholar] [CrossRef]
n | 90% | 95% | 99% |
---|---|---|---|
5 | 0.868731 | 1.2161 | 1.57217 |
10 | 0.488618 | 0.836443 | 1.23035 |
15 | 0.410873 | 0.611245 | 0.796065 |
20 | 0.361404 | 0.491752 | 0.696427 |
25 | 0.36791 | 0.485149 | 0.554637 |
30 | 0.298835 | 0.408053 | 0.433742 |
35 | 0.286803 | 0.404571 | 0.479514 |
40 | 0.235469 | 0.345774 | 0.396459 |
45 | 0.231345 | 0.322356 | 0.372959 |
50 | 0.252539 | 0.321946 | 0.377091 |
55 | 0.231475 | 0.330027 | 0.394961 |
60 | 0.250355 | 0.314627 | 0.360007 |
65 | 0.201125 | 0.283754 | 0.314362 |
70 | 0.186574 | 0.232399 | 0.27165 |
75 | 0.204348 | 0.266098 | 0.319055 |
80 | 0.187613 | 0.27441 | 0.332885 |
85 | 0.169602 | 0.229449 | 0.298501 |
90 | 0.18389 | 0.240486 | 0.298516 |
95 | 0.166333 | 0.213038 | 0.280515 |
100 | 0.161628 | 0.2132 | 0.24905 |
Distribution | ||||||
---|---|---|---|---|---|---|
LFR | 1.1456 | 1.3 | 1.385 | 1.379 | 1.262 | 1.225 |
Makeham | 0.5455 | 0.58 | 0.564 | 0.565 | 0.562 | 0.573 |
Weibull | ----- | ------ | 1.018 | 1.017 | 0.759 | 0.932 |
Distribution | n | |||
---|---|---|---|---|
LFR | 10 | 1 | 1 | 1 |
20 | 1 | 1 | 1 | |
30 | 1 | 1 | 1 | |
Gamma | 10 | 0.0662 | 0.5736 | 0.9716 |
20 | 0.0673 | 0.7831 | 0.9997 | |
30 | 0.068 | 0.8973 | 1 | |
Weibull | 10 | 0.7024 | 1 | 1 |
20 | 0. 9398 | 1 | 1 | |
30 | 0.9453 | 1 | 1 |
Data # 1 | |
Data # 2 |
n | 95% | 98% | 99% |
---|---|---|---|
5 | 9.06044 | 11.3263 | 11.3263 |
10 | 3.76773 | 4.24107 | 4.45821 |
15 | 2.16296 | 2.53999 | 2.78284 |
20 | 1.39771 | 1.64111 | 1.73429 |
25 | 0.946225 | 1.09012 | 1.23866 |
30 | 0.713409 | 0.852922 | 0.914456 |
35 | 0.599153 | 0.684245 | 0.774385 |
40 | 0.480519 | 0.543262 | 0.576404 |
45 | 0.424666 | 0.487289 | 0.534101 |
50 | 0.340545 | 0.394071 | 0.427245 |
55 | 0.300065 | 0.347867 | 0.374279 |
60 | 0.263235 | 0.29784 | 0.354673 |
65 | 0.241464 | 0.279319 | 0.306573 |
70 | 0.219645 | 0.253037 | 0.269572 |
75 | 0.194965 | 0.228086 | 0.255792 |
80 | 0.174686 | 0.209678 | 0.230627 |
85 | 0.158488 | 0.185419 | 0.205321 |
90 | 0.147107 | 0.16895 | 0.184741 |
95 | 0.136914 | 0.156613 | 0.166537 |
100 | 0.124793 | 0.142524 | 0.158562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakr, M.E.; A. Al-Babtain, A. Non-Parametric Hypothesis Testing for Unknown Aged Class of Life Distribution Using Real Medical Data. Axioms 2023, 12, 369. https://doi.org/10.3390/axioms12040369
Bakr ME, A. Al-Babtain A. Non-Parametric Hypothesis Testing for Unknown Aged Class of Life Distribution Using Real Medical Data. Axioms. 2023; 12(4):369. https://doi.org/10.3390/axioms12040369
Chicago/Turabian StyleBakr, Mahmoud. E., and Abdulhakim A. Al-Babtain. 2023. "Non-Parametric Hypothesis Testing for Unknown Aged Class of Life Distribution Using Real Medical Data" Axioms 12, no. 4: 369. https://doi.org/10.3390/axioms12040369
APA StyleBakr, M. E., & A. Al-Babtain, A. (2023). Non-Parametric Hypothesis Testing for Unknown Aged Class of Life Distribution Using Real Medical Data. Axioms, 12(4), 369. https://doi.org/10.3390/axioms12040369