On Two Intuitionistic Fuzzy Modal Topological Structures
Abstract
:1. Introduction
2. Short Remarks over IFSs
3. Definitions of Two New Intuitionistic Fuzzy Topological Operators
- (a)
- (b)
- .
4. Definitions of the Two New Intuitionistic Fuzzy Modal Topological Structures and Their Examples
- -
- E is a fixed universe,
- -
- is an operation over E,
- -
- is an operator over E, generated by an operation ,
- -
- ∘ is a modal operator,
- C1
- ,
- C2
- ,
- C3
- C4
- ,
- C5
- ,
- C6
- ,
- C7
- ,
- C8
- ,
- C9
- C1.
- C2.
- C3.
- C4.
- Having in mind that is a constant, we obtain that
- C5.
- C6.
- C7.
- C8.
- C9.
- -
- E is a fixed universe,
- -
- is an operation over E,
- -
- is an operator over E, generated by operation ∇,
- -
- • is a modal operator,
- I1
- ,
- I2
- ,
- I3
- I4
- ,
- I5
- ,
- I6
- ,
- I7
- ,
- I8
- ,
- I9
- I1.
- I2.
- I3.
- I4.
- Having in mind that is a constant, we obtain that
- I5.
- I6.
- I7.
- I8.
- I9.
5. Conclusions or Ideas for the Future
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atanassov, K. Intuitionistic Fuzzy Modal Topological Structure. Mathematics 2022, 10, 3313. [Google Scholar] [CrossRef]
- Bourbaki, N. Éléments De Mathématique, Livre III: Topologie Générale, Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes; Herman: Paris, France, 1960. (In French) [Google Scholar]
- Kuratowski, K. Topology; Academic Press: New York, NY, USA, 1966; Volume 1. [Google Scholar]
- Munkres, J. Topology; Prentice Hall Inc.: New Jersey, NJ, USA, 2000. [Google Scholar]
- Blackburn, P.; van Benthem, J.; Wolter, F. Handbook of Modal Logic; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Feys, R. Modal Logics; Gauthier: Paris, France, 1965. [Google Scholar]
- Fitting, M.; Mendelsohn, R. First Order Modal Logic; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Mints, G. A Short Introduction to Modal Logic; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Ban, A.I. Convex intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 1997, 3, 66–76. [Google Scholar]
- Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89. [Google Scholar] [CrossRef]
- Çoker, D. On topological structures using intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 1997, 3, 138–142. [Google Scholar]
- Çoker, D.; Demirci, M. An Introduction to intuitionistic fuzzy points. Notes Intuit. Fuzzy Sets 1995, 1, 79–84. [Google Scholar]
- Çoker, D.; Demirci, M. An Introduction to Intuitionistic Topological Spaces in Sostak’s Sense. Busefal 1996, 67, 67–76. [Google Scholar]
- El-Latif, A.; Khalaf, M. Connectedness in Intuitionistic Fuzzy Topological Spaces in Sostak’s Sense. Ital. J. Pure Appl. Math. 2015, 35, 649–668. [Google Scholar]
- Haydar Eş, A.; Çoker, D. More on fuzzy compactness in intuitionistic fuzzy topological spaces. Notes Intuit. Fuzzy Sets 1996, 2, 4–10. [Google Scholar]
- Kim, Y.C.; Abbas, S.E. Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. 2005, 20, 117–134. [Google Scholar] [CrossRef]
- Kutlu, F.; Bilgin, T. Temporal Intuitionistic Fuzzy Topology in Sostak’s Sense. Notes Intuit. Fuzzy Sets 2015, 21, 63–70. [Google Scholar]
- Kutlu, F.; Atan, O.; Bilgin, T. Distance Measure, Similarity Measure. Entropy and Inclusion Measure for Temporal Intuitionistic Fuzzy Sets. In Proceedings of the IFSCOM’2016, Mersin, Turkey, 16–19 June 2016; pp. 130–148. [Google Scholar]
- Kutlu, F.; Ramadan, A.; Bilgin, T. On Compactness in Temporal Intuitionistic Fuzzy Sostak Topology. Notes Intuit. Fuzzy Sets 2016, 22, 46–62. [Google Scholar]
- Kutlu, F. On Separation Axioms in Temporal Intuitionistic Fuzzy Sostak Topology. Notes Intuit. Fuzzy Sets 2017, 23, 21–30. [Google Scholar]
- Lee, S.J.; Lee, E.P. The category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 2000, 37, 63–76. [Google Scholar]
- Lupiañez, F.G. Separation in intuitionistic fuzzy topological spaces. Int. Pure Appl. Math. 2004, 17, 29–34. [Google Scholar]
- Lupiañez, F.G. On intuitionistic fuzzy topological spaces. Kybernetes 2006, 35, 743–747. [Google Scholar] [CrossRef]
- Milles, S. The Lattice of Intuitionistic Fuzzy Topologies Generated by Intuitionistic Fuzzy Relations. Appl. Appl. Math. 2020, 15, 942–956. [Google Scholar]
- Mondal, K.; Samanta, S.K. A study on intuitionistic fuzzy topological spaces. Notes Intuit. Fuzzy Sets 2003, 9, 1–32. [Google Scholar]
- Özbakir, O.; Çoker, D. Fuzzy multifunctions in intuitionistic fuzzy topological spaces. Notes Intuit. Fuzzy Sets 1999, 5, 1–5. [Google Scholar]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Rajarajeswari, P.; Krishna Moorthy, R. Intuitionistic fuzzy completely weakly generalized continuous mappings. Notes Intuit. Fuzzy Sets 2012, 18, 25–36. [Google Scholar]
- Roopkumar, R.; Kalaivani, C. Continuity of intuitionistic fuzzy proper functions on intuitionistic smooth fuzzy topological spaces. Notes Intuit. Fuzzy Sets 2010, 16, 1–21. [Google Scholar]
- Samanta, S.K.; Mondal, T.K. Intuitionistic Gradation of Openness: Intuitionistic Fuzzy Topology. Busefal 1997, 73, 8–17. [Google Scholar]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–334. [Google Scholar] [CrossRef]
- Thakur, S.; Chaturvedi, R. Generalized continuity in intuitionistic fuzzy topological spaces. Notes Intuit. Fuzzy Sets 2006, 12, 38–44. [Google Scholar]
- Tiwari, S. On relationships among intuitionistic fuzzy approximation operators, intuitionistic fuzzy topology and intuitionistic fuzzy automata. Notes Intuit. Fuzzy Sets 2010, 16, 1–9. [Google Scholar]
- Yılmaz, S.; Cuvalcıoglu, G. On Level Operators for Temporal Intuitionistic Fuzzy Sets. Notes Intuit. Fuzzy Sets 2014, 20, 6–15. [Google Scholar]
- Yongfa, H.; Changjun, J. Some properties of intuitionistic fuzzy metric spaces. Notes Intuit. Fuzzy Sets 2004, 10, 18–26. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K. The intuitionistic fuzzy sets as constructive objects. Recent Adv. Fuzzy Sets 2011, 1, 1–23. [Google Scholar]
- Angelova, N.; Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 2017, 23, 29–41. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Temporal Topological Structures. Axioms 2023, 12, 182. [Google Scholar] [CrossRef]
- Atanassov, K. On the Intuitionistic Fuzzy Modal Feeble Topological Structures. Notes Intuit. Fuzzy Sets 2022, 28, 211–222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K.; Angelova, N.; Pencheva, T. On Two Intuitionistic Fuzzy Modal Topological Structures. Axioms 2023, 12, 408. https://doi.org/10.3390/axioms12050408
Atanassov K, Angelova N, Pencheva T. On Two Intuitionistic Fuzzy Modal Topological Structures. Axioms. 2023; 12(5):408. https://doi.org/10.3390/axioms12050408
Chicago/Turabian StyleAtanassov, Krassimir, Nora Angelova, and Tania Pencheva. 2023. "On Two Intuitionistic Fuzzy Modal Topological Structures" Axioms 12, no. 5: 408. https://doi.org/10.3390/axioms12050408
APA StyleAtanassov, K., Angelova, N., & Pencheva, T. (2023). On Two Intuitionistic Fuzzy Modal Topological Structures. Axioms, 12(5), 408. https://doi.org/10.3390/axioms12050408