Next Article in Journal
Longitudinal Data Analysis Based on Bayesian Semiparametric Method
Next Article in Special Issue
Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions
Previous Article in Journal
Study of Burgers–Huxley Equation Using Neural Network Method
Previous Article in Special Issue
A q-Analog of the Class of Completely Convex Functions and Lidstone Series
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator

by
Abbas Kareem Wanas
1,
Fethiye Müge Sakar
2 and
Alina Alb Lupaş
3,*
1
Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Iraq
2
Department of Management, Faculty of Economics and Administrative Sciences, Dicle University, Diyarbakir 21280, Turkey
3
Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(5), 430; https://doi.org/10.3390/axioms12050430
Submission received: 25 February 2023 / Revised: 13 March 2023 / Accepted: 25 April 2023 / Published: 26 April 2023
(This article belongs to the Special Issue New Developments in Geometric Function Theory II)

Abstract

:
In current manuscript, using Laguerre polynomials and ( p q ) -Wanas operator, we identify upper bounds a 2 and a 3 which are first two Taylor-Maclaurin coefficients for a specific bi-univalent functions classes W ( η , δ , λ , σ , θ , α , β , p , q ; h ) and K ( ξ , ρ , σ , θ , α , β , p , q ; h ) which cover the convex and starlike functions. Also, we discuss Fekete-Szegö type inequality for defined class.

1. Introduction

Denote by A function collections that have the style:
f ( z ) = z + n = 2 a n z n , z D ,
holomorphic in D = z : z < 1 in the complex plane C .
Further, present by S the sub-set of A including of univalent functions in D fullfiling (1). Taking account the Koebe 1 4 theorem (see [1]), each f S has an inverse f 1 with the properties f 1 ( f ( z ) ) = z , for z D and f ( f 1 ( w ) ) = w , with w < r 0 ( f ) , where r 0 ( f ) 1 4 . If f is of the style (1), then
f 1 ( w ) = w a 2 w 2 + 2 a 2 2 a 3 w 3 5 a 2 3 5 a 2 a 3 + a 4 w 4 + , w < r 0 ( f ) .
When f and f 1 are univalent functions, f A is bi-univalent in D . The set of bi-univalent functions can be expressed by . The work on bi-univalent functions have been brightened by Srivastava et al. [2] in recent years. The following functions can be examplified for functions in the set of bi-univalent.
z 1 z , log ( 1 z ) and 1 2 log 1 + z 1 z .
Although Koebe function is not an element of bi-univalent set of functions, the is not null set.
Later, such studies continued by Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and others (see, for example, [6,7,8,9,10,11,12,13,14,15,16,17,18]). However, non decisive predictions of the | a 2 | and | a 3 | coefficients in given by (1) were declared in different studies. Generalized inequalities on Taylor-Maclaurin coefficients
| a n | ( n N ; n 3 )
for f has not been totally solved yet for several subfamilies of the .
a 3 μ a 2 2 of the Fekete-Szegö function for f S is well-known in the Geometric Function Theory.
Its origin lies in the refutation of the Littlewood-Paley conjecture by Fekete-Szegö [19]. In that case, the coefficients of odd (single-valued) univalent functions are bounded by unity.
Functions have received much attention since then, especially in the investigation of many subclasses of the single-valued function family.
This topic has become very interesting for Geometric Function Theorists (see for example [20,21,22,23,24,25]).
The generator function for Laguerre polynomial L n γ τ is the polynomial answer ϕ ( τ ) of the differential equation ([26])
τ ϕ + ( 1 + γ τ ) ϕ + n ϕ = 0 ,
where γ > 1 and n is non-negative integers.
The generating function of generator function for Laguerre polynomial L n γ τ is expressed as below:
H γ τ , z = n = 0 L n γ τ z n = e τ z 1 z 1 z γ + 1 ,
where τ R and z D . The generator function for Laguerre polynomial can also be expressed given below:
L n + 1 γ τ = 2 n + 1 + γ τ n + 1 L n γ τ n + γ n + 1 L n 1 γ τ ( n 1 ) ,
with the initial terms
L 0 γ τ = 1 , L 1 γ τ = 1 + γ τ and L 2 γ τ = τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 .
Simply, when γ = 0 the generator function for Laguerre polynomial leads to the simply Laguerre polynomial, L n 0 τ = L n τ .
Let f and g be holomorphic in D , it is clear that f is subordinate to g, if there occurs a holomorphic function w in D such that w ( 0 ) = 0 , and w ( z ) < 1 , for z D so that f ( z ) = g w ( z ) . This subordination is indicated by f g . Moreover, if g is univalent in D , then we have the balance (see [27]), given by f ( z ) g ( z ) f ( D ) g ( D ) a n d   f ( 0 ) = g ( 0 ) .
The ( p , q ) -derivative operator or ( p , q ) -difference operator ( 0 < q < p 1 ), for a function f is stated by
D p , q f ( z ) = f ( p z ) f ( q z ) ( p q ) z ( z D * = D 0 ) ,
and
D p , q f ( 0 ) = f ( 0 ) .
More information on the subject of ( p , q ) -calculus are founded in [28,29,30,31,32,33].
For f A , we conclude that
D p , q f ( z ) = 1 + n = 2 [ n ] p , q a n z n 1 ,
where the ( p , q ) -bracket number or twin-basic [ n ] p , q is showed by
[ n ] p , q = p n q n p q = p n 1 + p n 2 q + p n 3 q 2 + + p q n 2 + q n 1 ( p q ) ,
which is a native generator number for q, namely is, we get (see [34,35])
lim p 1 [ n ] p , q = [ n ] q = 1 q n 1 q .
Obviously, the impression [ n ] p , q is symmetric, namely,
[ n ] p , q = [ n ] q , p .
Wanas and Cotîrlǎ [36] presented W α , β , p , q σ , θ : A A known as ( p q ) -Wanas operator showed by
W α , β , p , q σ , θ f ( z ) = z + n = 2 [ Ψ n ( σ , α , β ) ] p , q [ Ψ 1 ( σ , α , β ) ] p , q θ a n z n = z + n = 2 [ Ψ n ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a n z n ,
where
Ψ n ( σ , α , β ) = τ = 1 σ σ τ ( 1 ) τ + 1 α τ + n β τ , Ψ 1 ( σ , α , β ) = τ = 1 σ σ τ ( 1 ) τ + 1 α τ + β τ ,
and
α R , β R 0 + with α + β > 0 , n 1 N , σ N , θ N 0 , 0 < q < p 1 and z D .
Remark 1.
The operator W α , β , p , q σ , θ is a generalized form of several operators given in previous researches for some values of parameters which are mentioned below.
1.
For p = σ = β = 1 , θ = ν , ( ν ) > 1 and α C Z 0 , the operator W α , β , p , q σ , θ decreases to the q-Srivastava Attiya operator J q , α ν [37].
2.
For p = σ = β = 1 , θ = 1 and α > 1 , the operator W α , β , p , q σ , θ decreases to the q-Bernardi operator [38].
3.
For p = σ = α = β = 1 and θ = 1 , the operator W α , β , p , q σ , θ decreases to the q-Libera operator [38].
4.
For α = 0 and p = σ = β = 1 , the operator W α , β , p , q σ , θ decreases to the q-Sălăgean operator [39].
5.
For q 1 and p = σ = 1 , the operator W α , β , p , q σ , θ decreases to the operator I α , β θ was presented and studied by Swamy [40].
6.
For q 1 , p = σ = β = 1 , θ = ν , ( ν ) > 1 and s C Z 0 , the operator W α , β , p , q σ , θ decreases to the operator J α ν was presented by Srivastava and Attiya [41]. The operator J s ν is well-known as Srivastava-Attiya operator by researchers.
7.
For q 1 , p = σ = β = 1 and α > 1 , the operator W α , β , p , q σ , θ , decreases to the operator I α θ was presented by Cho and Srivastava [42].
8.
For q 1 , p = σ = α = β = 1 , the operator W α , β , p , q σ , θ decreases to the operator I θ was presented by Uralegaddi and Somanatha [43].
9.
For q 1 , p = σ = α = β = 1 , θ = ξ and ξ > 0 , the operator W α , β , p , q σ , θ decreases to the operator I ξ was presented by Jung et al. [44]. The operator I ξ is the Jung-Kim-Srivastava integral operator.
10.
For q 1 , p = σ = β = 1 , θ = 1 and α > 1 , the operator W α , β , p , q σ , θ decreases to the Bernardi operator [45].
11.
For q 1 , α = 0 , p = σ = β = 1 and θ = 1 , the operator W α , β , p , q σ , θ decreases to the Alexander operator [46].
12.
For q 1 , p = σ = 1 , α = 1 β and t 0 , the operator W α , β , p , q σ , θ decreases to the operator D β θ was presented by Al-Oboudi [19].
13.
For q 1 , p = σ = 1 , α = 0 and β = 1 , the operator W α , β , p , q σ , θ decreases to the operator S θ was presented by Sălăgean [47].

2. Main Results

Firstly, We start to present the classes W ( η , δ , λ , σ , θ , α , β , p , q ; h ) and K ( ξ , ρ , σ , θ , α , β , p , q ; h ) given below:
Definition 1.
Suppose that 0 η 1 , 0 λ 1 , 0 δ 1 and h is analytic in D , h ( 0 ) = 1 . f is in the class W ( η , δ , λ , σ , θ , α , β , p , q ; h ) if it provides the subordinations:
z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) η ( 1 δ ) z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + δ 1 + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) λ h ( z )
and
w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) η ( 1 δ ) w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + δ 1 + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) λ h ( w ) ,
where f 1 is given by (2).
Definition 2.
Suppose that 0 ξ 1 , 0 ρ < 1 and h is analytic in D , h ( 0 ) = 1 . f is in the class K ( ξ , ρ , σ , θ , α , β , p , q ; h ) if it provides the subordinations:
( 1 ξ ) z W α , β , p , q σ , θ f ( z ) ( 1 ρ ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z )
+ ξ W α , β , p , q σ , θ f ( z ) + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z ) h ( z )
and
( 1 ξ ) w W α , β , p , q σ , θ f 1 ( w ) ( 1 ρ ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w )
+ ξ W α , β , p , q σ , θ f 1 ( w ) + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w ) h ( w ) ,
where f 1 is given by (2).
Theorem 1.
Suppose that 0 η 1 , 0 λ 1 and 0 δ 1 . If f of the style (1) be an element of class W ( η , δ , λ , σ , θ , α , β , p , q ; h ) , with h ( z ) = 1 + e 1 z + e 2 z 2 + , then
a 2 η + λ ( δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q θ | e 1 | [ Ψ 1 ( σ , α , β ) ] p , q θ = | e 1 | Ω
and
a 3 min max e 1 Δ , e 2 Δ φ e 1 2 Ω 2 Δ , max e 1 Δ , e 2 Δ ( 2 Δ + φ ) e 1 2 Ω 2 Δ ,
where
Ω = η + λ ( δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ , Δ = 2 η + λ ( 2 δ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ , φ = η ( η 1 ) + λ ( δ + 1 ) 2 η + ( λ 1 ) ( δ + 1 ) 2 η + λ ( 3 δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ 2 [ Ψ 1 ( σ , α , β ) ] p , q 2 θ .
Proof. 
Assume that f W ( η , δ , λ , σ , θ , α , β , p , q ; e 1 ; e 2 ) . Then there consists two holomorphic functions ϕ , ψ : D D showed by
ϕ ( z ) = r 1 z + r 2 z 2 + r 3 z 3 + ( z D )
and
ψ ( w ) = s 1 w + s 2 w 2 + s 3 w 3 + ( w D ) ,
with ϕ ( 0 ) = ψ ( 0 ) = 0 , ϕ ( z ) < 1 , ψ ( w ) < 1 , z , w D so that
z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) η ( 1 δ ) z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + δ 1 + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) λ = 1 + e 1 ϕ ( z ) + e 2 ϕ 2 ( z ) +
and
w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) η ( 1 δ ) w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + δ 1 + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) λ = 1 + e 1 ψ ( w ) + e 2 ψ 2 ( w ) + .
Unification of (7), (8), (9) and (10), yield
z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) η ( 1 δ ) z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + δ 1 + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) λ = 1 + e 1 r 1 z + e 1 r 2 + e 2 r 1 2 z 2 +
and
w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) η ( 1 δ ) w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + δ 1 + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) λ = 1 + e 1 s 1 w + e 1 s 2 + e 2 s 1 2 w 2 + .
It is clear that if ϕ ( z ) < 1 and ψ ( w ) < 1 , z , w D , we obtain
r j 1 and s j 1 ( j N ) .
Taking into account (11) and (12), after simplifying, we find that
η + λ ( δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 2 = e 1 r 1 ,
2 η + λ ( 2 δ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 3 + η ( η 1 ) + λ ( δ + 1 ) 2 η + ( λ 1 ) ( δ + 1 ) 2 η + λ ( 3 δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ 2 [ Ψ 1 ( σ , α , β ) ] p , q 2 θ a 2 2 = e 1 r 2 + e 2 r 1 2 ,
η + λ ( δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 2 = e 1 s 1
and
2 η + λ ( 2 δ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ 2 a 2 2 a 3 + η ( η 1 ) + λ ( δ + 1 ) 2 η + ( λ 1 ) ( δ + 1 ) 2 η + λ ( 3 δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ 2 [ Ψ 1 ( σ , α , β ) ] p , q 2 θ a 2 2 = e 1 s 2 + e 2 s 1 2 .
If we implement notation (6), then (13) and (14) becomes
Ω a 2 = e 1 r 1 , Δ a 3 + φ a 2 2 = e 1 r 2 + e 2 r 1 2 .
This gives
Δ e 1 a 3 = r 2 + e 2 e 1 φ e 1 Ω 2 r 1 2 ,
and on using the given certain result ([48], p. 10):
| r 2 μ r 1 2 | max 1 , | μ |
for every μ C , we get
Δ e 1 | a 3 | max 1 , e 2 e 1 φ e 1 Ω 2 .
In the same way, (15) and (16) becomes
Ω a 2 = e 1 s 1 , Δ ( 2 a 2 2 a 3 ) + φ a 2 2 = e 1 s 2 + e 2 s 1 2 .
This gives
Δ e 1 a 3 = s 2 + e 2 e 1 ( 2 Δ + φ ) e 1 Ω 2 s 1 2 .
Applying (19), we obtain
Δ e 1 | a 3 | max 1 , e 2 e 1 ( 2 Δ + φ ) e 1 Ω 2 .
Inequality (5) follows from (20) and (23). □
If we take the generating function L n γ τ given by (3) common generalized Laguerre polynomials as h ( z ) , then from the equalities given (4), we get e 1 = 1 + γ τ and e 2 = τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 . We obtain following corollary from Theorem 1.
Corollary 1.
If f given by style (1) is in the family W ( η , δ , λ , σ , θ , α , β , p , q ; H γ τ , z ) , then
a 2 η + λ ( δ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q θ | 1 + γ τ | [ Ψ 1 ( σ , α , β ) ] p , q θ = | 1 + γ τ | Ω
and
a 3 min max 1 + γ τ Δ , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 Δ φ 1 + γ τ 2 Ω 2 Δ , max 1 + γ τ Δ , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 Δ ( 2 Δ + φ ) 1 + γ τ 2 Ω 2 Δ ,
for all η , λ , δ so that 0 η 1 , 0 λ 1 and 0 δ 1 , where Ω , Δ , φ are given by (6) and H γ τ , z is given by (3).
Theorem 2.
Suppose that 0 ξ 1 and 0 ρ < 1 . If f of the style (1) be an element of the class K ( ξ , ρ , σ , θ , α , β , p , q ; h ) , with h ( z ) = 1 + e 1 z + e 2 z 2 + , then
a 2 ( ξ + 1 ) ( 1 ρ ) [ Ψ 2 ( σ , α , β ) ] p , q θ | e 1 | [ Ψ 1 ( σ , α , β ) ] p , q θ = | e 1 | Υ
and
a 3 min max e 1 Φ , e 2 Φ χ e 1 2 Υ 2 Φ , max e 1 Φ , e 2 Φ ( 2 Φ + χ ) e 1 2 Υ 2 Φ ,
where
Υ = ( ξ + 1 ) ( 1 ρ ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ , Φ = 2 ( 2 ξ + 1 ) ( 1 ρ ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ , χ = ( 2 ξ + 1 ) ( ρ 2 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ [ Ψ 1 ( σ , α , β ) ] p , q 2 θ .
Proof. 
Assume that f K ( ξ , ρ , σ , θ , α , β , p , q ; e 1 ; e 2 ) . Then there consists two holomorphic functions ϕ , ψ : D D such that
( 1 ξ ) z W α , β , p , q σ , θ f ( z ) ( 1 ρ ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z ) + ξ W α , β , p , q σ , θ f ( z ) + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z ) = 1 + e 1 ϕ ( z ) + e 2 ϕ 2 ( z ) +
and
( 1 ξ ) w W α , β , p , q σ , θ f 1 ( w ) ( 1 ρ ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w ) + ξ W α , β , p , q σ , θ f 1 ( w ) + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w ) = 1 + e 1 ψ ( w ) + e 2 ψ 2 ( w ) + ,
where ϕ and ψ given by the style (7) and (8). Unification of (26) and (27), serve
( 1 ξ ) z W α , β , p , q σ , θ f ( z ) ( 1 ρ ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z ) + ξ W α , β , p , q σ , θ f ( z ) + z W α , β , p , q σ , θ f ( z ) W α , β , p , q σ , θ f ( z ) + ρ z W α , β , p , q σ , θ f ( z ) = 1 + e 1 r 1 z + e 1 r 2 + e 2 r 1 2 z 2 +
and
( 1 ξ ) w W α , β , p , q σ , θ f 1 ( w ) ( 1 ρ ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w ) + ξ W α , β , p , q σ , θ f 1 ( w ) + w W α , β , p , q σ , θ f 1 ( w ) W α , β , p , q σ , θ f 1 ( w ) + ρ w W α , β , p , q σ , θ f 1 ( w ) = 1 + e 1 s 1 w + e 1 s 2 + e 2 s 1 2 w 2 + .
It is clear that if ϕ ( z ) < 1 and ψ ( w ) < 1 , z , w D , we obtain
r j 1 and s j 1 ( j N ) .
Taking into account (28) and (29), after simplifying, we find that
( ξ + 1 ) ( 1 ρ ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 2 = e 1 r 1 ,
2 ( 2 ξ + 1 ) ( 1 ρ ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 3 + ( 2 ξ + 1 ) ( ρ 2 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ [ Ψ 1 ( σ , α , β ) ] p , q 2 θ a 2 2 = e 1 r 2 + e 2 r 1 2 ,
( ξ + 1 ) ( 1 ρ ) [ Ψ 2 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ a 2 = e 1 s 1
and
2 ( 2 ξ + 1 ) ( 1 ρ ) [ Ψ 3 ( σ , α , β ) ] p , q θ [ Ψ 1 ( σ , α , β ) ] p , q θ 2 a 2 2 a 3 + ( 2 ξ + 1 ) ( ρ 2 1 ) [ Ψ 2 ( σ , α , β ) ] p , q 2 θ [ Ψ 1 ( σ , α , β ) ] p , q 2 θ a 2 2 = e 1 s 2 + e 2 s 1 2 .
If we implement notation (25), then (30) and (31) becomes
Υ a 2 = e 1 r 1 , Φ a 3 + χ a 2 2 = e 1 r 2 + e 2 r 1 2 .
This gives
Φ e 1 a 3 = r 2 + e 2 e 1 χ e 1 Υ 2 r 1 2 ,
and on using the given certain result ([48], p. 10):
| r 2 μ r 1 2 | max 1 , | μ |
for every μ C , we get
Φ e 1 | a 3 | max 1 , e 2 e 1 χ e 1 Υ 2 .
In the same way, (32) and (33) becomes
Υ a 2 = e 1 s 1 , Φ ( 2 a 2 2 a 3 ) + χ a 2 2 = e 1 s 2 + e 2 s 1 2 .
This gives
Φ e 1 a 3 = s 2 + e 2 e 1 ( 2 Φ + χ ) e 1 Υ 2 s 1 2 .
Applying (36), we obtain
Φ e 1 | a 3 | max 1 , e 2 e 1 ( 2 Φ + χ ) e 1 Υ 2 .
Inequality (24) follows from (37) and (40). □
If we take the generating function L n γ τ given by (3) common generalized Laguerre polynomials as h ( z ) , then from the equalities given (4), we get e 1 = 1 + γ τ and e 2 = τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 . We obtain following corollary from Theorem 2.
Corollary 2.
If f of the style (1) be an element of the class K ( ξ , ρ , σ , θ , α , β , p , q ; H γ τ , z ) , then
a 2 ( ξ + 1 ) ( 1 ρ ) [ Ψ 2 ( σ , α , β ) ] p , q θ | 1 + γ τ | [ Ψ 1 ( σ , α , β ) ] p , q θ = | 1 + γ τ | Υ
and
a 3 min max 1 + γ τ Φ , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 Φ χ 1 + γ τ 2 Υ 2 Φ , max 1 + γ τ Φ , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 Φ ( 2 Φ + χ ) 1 + γ τ 2 Υ 2 Φ ,
for all ξ , ρ so that 0 ξ 1 and 0 ρ < 1 , where Υ , Φ , χ are introduced by (25) and H γ τ , z is given by (3).
We investigate the “Fekete-Szegö Inequalities” for the families W ( η , δ , λ , σ , θ , α , β , p , q ; h ) and K ( ξ , ρ , σ , θ , α , β , p , q ; h ) in next theorems.
Theorem 3.
If f of the style (1) be an element of family W ( η , δ , λ , σ , θ , α , β , p , q ; h ) , then
a 3 ζ a 2 2 | e 1 | Δ min max 1 , e 2 e 1 + ( ζ Δ φ ) e 1 Ω 2 , max 1 , e 2 e 1 ( 2 Δ + φ ζ Δ ) e 1 Ω 2 ,
for all ζ , η , λ , δ such that ζ R , 0 η 1 , 0 λ 1 and 0 δ 1 , where Ω , Δ , φ are given by (6) and e 1 , e 2 , a 2 and a 3 as defined in Theorem 1.
Proof. 
We implement the impressions from the Theorem 1’s proof. From (17) and from (18), we get
a 3 ζ a 2 2 = e 1 Δ r 2 + e 2 e 1 + ( ζ Δ φ ) e 1 Ω 2 r 1 2
by using the certain result | r 2 μ r 1 2 | max 1 , | μ | , we get
| a 3 ζ a 2 2 | | e 1 | Δ max 1 , e 2 e 1 + ( ζ Δ φ ) e 1 Ω 2 .
In the same way, from (21) and from (22), we get
a 3 ζ a 2 2 = e 1 Δ s 2 + e 2 e 1 ( 2 Δ + φ ζ Δ ) e 1 Ω 2 s 1 2
and on using | s 2 μ s 1 2 | max 1 , | μ | , we get
| a 3 ζ a 2 2 | | e 1 | Δ max 1 , e 2 e 1 ( 2 Δ + φ ζ Δ ) e 1 Ω 2 .
Corollary 3.
If f of the style (1) be an element of W ( η , δ , λ , σ , θ , α , β , p , q ; H γ τ , z ) , then
a 3 ζ a 2 2 | 1 + γ τ | Δ min max 1 , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 1 + γ τ + ( ζ Δ φ ) ( 1 + γ τ ) Ω 2 , max 1 , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 1 + γ τ ( 2 Δ + φ ζ Δ ) ( 1 + γ τ ) Ω 2 ,
for each ζ , η , λ , δ such that ζ R , 0 η 1 , 0 λ 1 and 0 δ 1 , where Ω , Δ , φ are given by (6) and H γ τ , z is presented by (3).
Theorem 4.
If f of the style (1) is in the family K ( ξ , ρ , σ , θ , α , β , p , q ; h ) , then
a 3 ζ a 2 2 | e 1 | Φ min max 1 , e 2 e 1 + ( ζ Φ χ ) e 1 Υ 2 , max 1 , e 2 e 1 ( 2 Φ + χ ζ Φ ) e 1 Υ 2 ,
for all ζ , ξ , ρ such that ζ R , 0 ξ 1 and 0 ρ < 1 , where Υ , Φ , χ are given by (25) and e 1 , e 2 , a 2 and a 3 as defined in Theorem 2.
Proof. 
We implement the impressions from the Theorem 2’s proof. From (34) and from (35), we get
a 3 ζ a 2 2 = e 1 Φ r 2 + e 2 e 1 + ( ζ Φ χ ) e 1 Υ 2 r 1 2
by using the certain result | r 2 μ r 1 2 | max 1 , | μ | , we get
| a 3 ζ a 2 2 | | e 1 | Φ max 1 , e 2 e 1 + ( ζ Φ χ ) e 1 Υ 2 .
In the same way, from (38) and from (39), we get
a 3 ζ a 2 2 = e 1 Φ s 2 + e 2 e 1 ( 2 Φ + χ ζ Φ ) e 1 Υ 2 s 1 2
and on using | s 2 μ s 1 2 | max 1 , | μ | , we get
| a 3 ζ a 2 2 | | e 1 | Φ max 1 , e 2 e 1 ( 2 Φ + χ ζ Φ ) e 1 Υ 2 .
Corollary 4.
If f of the style (1) be an element of K ( ξ , ρ , σ , θ , α , β , p , q ; H γ τ , z ) , then
a 3 ζ a 2 2 | 1 + γ τ | Φ min max 1 , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 1 + γ τ + ( ζ Φ χ ) ( 1 + γ τ ) Υ 2 , max 1 , τ 2 2 ( γ + 2 ) τ + ( γ + 1 ) ( γ + 2 ) 2 1 + γ τ ( 2 Φ + χ ζ Φ ) ( 1 + γ τ ) Υ 2 ,
for each ζ , ξ , ρ such that ζ R , 0 ξ 1 and 0 ρ < 1 , where Υ , Φ , χ are given by (25) and H γ τ , z is presented by (3).

3. Conclusions

The main aim of this study was to constitute a new classes W ( η , δ , λ , σ , θ , α , β , p , q ; h ) and K ( ξ , ρ , σ , θ , α , β , p , q ; h ) of bi-univalent functions described through ( p q ) -Wanas operator and also utilization of the generator function for Laguerre polynomial L n γ τ , presented by the equalities in (4) and the producing function H γ τ , z given by (3). The initial Taylor-Maclaurin coefficient estimates for functions of these freshly presented bi-univalent function classes W ( η , δ , λ , σ , θ , α , β , p , q ; h ) and K ( ξ , ρ , σ , θ , α , β , p , q ; h ) were produced and the well-known Fekete-Szegö inequalities were examined.

Author Contributions

Conceptualization, A.K.W. and F.M.S.; methodology, A.K.W. and F.M.S.; software, A.A.L.; validation, A.A.L. and A.K.W.; formal analysis, A.K.W. and F.M.S.; investigation, A.K.W. and F.M.S.; resources, F.M.S.; data curation, A.K.W.; writing—original draft preparation, F.M.S.; writing—review and editing, A.A.L. and F.M.S.; visualization, A.K.W.; supervision, F.M.S.; project administration, F.M.S.; funding acquisition, A.A.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the University of Oradea.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  2. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
  3. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
  4. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
  5. Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
  6. Akgül, A. (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class. Turk. J. Math. 2019, 43, 2170–2176. [Google Scholar] [CrossRef]
  7. Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
  8. Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms 2022, 11, 451. [Google Scholar] [CrossRef]
  9. Altınkaya, Ş. Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator. Turk. J. Math. 2019, 43, 620–629. [Google Scholar] [CrossRef]
  10. Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ+ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
  11. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
  12. Cotîrlǎ, L.-I.; Wanas, A.K. Applications of Laguerre polynomials for BazileviÄ and θ-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions. Symmetry 2023, 15, 406. [Google Scholar] [CrossRef]
  13. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
  14. Juma, A.R.S.; Al-Fayadh, A.; Vijayalakshmi, S.P.; Sudharsan, T.V. Upper bound on the third hnkel determinant of the class of univalent functions using an operator. Afr. Mat. 2022, 33, 56. [Google Scholar] [CrossRef]
  15. Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi- Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
  16. Sakar, F.M.; Akgül, A. Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Math. 2022, 7, 5146–5155. [Google Scholar] [CrossRef]
  17. Shahab, N.H.; Juma, A.R.S. Coefficient bounds for certain subclasses for meromorphic functions involving quasi subordination. AIP Conf. Proc. 2022, 2400, 030001. [Google Scholar]
  18. Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
  19. Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
  20. Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103–113. [Google Scholar] [CrossRef]
  21. Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar] [CrossRef]
  22. Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. AIMS Math. 2022, 8, 340–360. [Google Scholar] [CrossRef]
  23. Srivastava, H.M.; Sakar, F.M.; Güney, H.Ö. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018, 32, 1313–1322. [Google Scholar] [CrossRef]
  24. Wanas, A.K.; Cotîrlǎ, L.-I. Applications of (M-N)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
  25. Wanas, A.K.; Lupaş, A.A. Applications of Laguerre polynomials on a new family of bi-prestarlike functions. Symmetry 2022, 14, 645. [Google Scholar] [CrossRef]
  26. Lebedev, N.N. Special Functions and Their Applications; Translated from the revised Russian edition (Moscow, 1963) by Richard A. Silverman; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
  27. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  28. Çağlar, M.; Aslan, S. Fekete-Szegö inequalities for subclasses of bi-univalent functions satisfying subordinate conditions. AIP Conf. Proc. 2016, 1726, 020078. [Google Scholar] [CrossRef]
  29. Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv 2006, arXiv:math/0602613. [Google Scholar]
  30. Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl.Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  31. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
  32. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Físicas Y Nat. Ser. A Matemáticas (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
  33. Victor, K.; Pokman, C. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  34. Corcino, R.B. On p,q-binomial coefficients. Integers 2008, 8, A29. [Google Scholar]
  35. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2013, arXiv:1309.3934. [Google Scholar]
  36. Wanas, A.K.; Cotîrlǎ, L.-I. Initial coefficient estimates and Fekete- Szegö inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
  37. Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
  38. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
  39. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
  40. Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
  41. Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
  42. Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
  43. Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; Srivastava, H.M., Own, S., Eds.; World Scientific: Singapore, 1992; pp. 371–374. [Google Scholar]
  44. Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
  45. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
  46. Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
  47. Sălăgean, G.S. Subclasses of Univalent Functions; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
  48. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wanas, A.K.; Sakar, F.M.; Alb Lupaş, A. Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator. Axioms 2023, 12, 430. https://doi.org/10.3390/axioms12050430

AMA Style

Wanas AK, Sakar FM, Alb Lupaş A. Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator. Axioms. 2023; 12(5):430. https://doi.org/10.3390/axioms12050430

Chicago/Turabian Style

Wanas, Abbas Kareem, Fethiye Müge Sakar, and Alina Alb Lupaş. 2023. "Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator" Axioms 12, no. 5: 430. https://doi.org/10.3390/axioms12050430

APA Style

Wanas, A. K., Sakar, F. M., & Alb Lupaş, A. (2023). Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator. Axioms, 12(5), 430. https://doi.org/10.3390/axioms12050430

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop