Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation
Abstract
:1. Introduction
2. Basic Definitions
3. QR Decomposition of the Tensor
4. Eigenvalue of the Tensor
5. Singular Value Decomposition of the Tensor
6. Application
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef]
- De Lathauwer, L.; De Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278. [Google Scholar] [CrossRef]
- Chen, W.J.; Yu, S.W. RSVD for Three Quaternion Tensors with Applications in Color Video Watermark Processing. Axioms 2023, 12, 232. [Google Scholar] [CrossRef]
- Lim, L.H. Singular values and eigenvalues of tensors: A variational approach. In Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 13–15 December 2005; pp. 129–132. [Google Scholar]
- Chen, Z.; Lu, L. A tensor singular values and its symmetric embedding eigenvalues. J. Comput. Appl. Math. 2013, 250, 217–228. [Google Scholar] [CrossRef]
- Ragnarsson, S.; Van Loan, C.F. Block tensors and symmetric embeddings. Linear Algebra Appl. 2013, 438, 853–874. [Google Scholar] [CrossRef]
- Chang, K.; Qi, L.; Zhou, G. Singular values of a real rectangular tensor. J. Math. Anal. Appl. 2010, 370, 284–294. [Google Scholar] [CrossRef]
- Brazell, M.; Li, N.; Navasca, C.; Tamon, C. Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 2013, 34, 542–570. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, M.T.; Chu, D. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. Appl. 2018, 39, 1095–1115. [Google Scholar] [CrossRef]
- Li, L.; Victoria, B. MATLAB User Manual; MathWorks: Natick, MA, USA, 1999. [Google Scholar]
- Ragnarsson, S.; Van Loan, C.F. Block tensor unfoldings. SIAM J. Matrix Anal. Appl. 2012, 33, 149–169. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Marchuk, G.I. Construction of adjoint operators in non-linear problems of mathematical physics. Sb. Math. 1998, 189, 1505–1516. [Google Scholar] [CrossRef]
- Ding, W.; Wei, Y. Solving multi-linear systems with M-tensors. J. Sci. Comput. 2016, 68, 689–715. [Google Scholar] [CrossRef]
- Cui, L.B.; Chen, C.; Wen, L.; Ng, M.K. An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebr. Int. J. Publ. Artic. Rev. Probl. 2016, 64, 602–621. [Google Scholar] [CrossRef]
- Silva, A.P.D.; Comon, P.; Almeida, A.L.F.D. A Finite Algorithm to Compute Rank-1 Tensor Approximations. IEEE Signal Process. Lett. 2016, 23, 959–963. [Google Scholar] [CrossRef]
- Hansen, P.C.; Nagy, J.G.; O’Leary, D.P. Deblurring Images: Matrices, Spectra, and Filtering; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]
Order | Compression Ratio | ||
---|---|---|---|
6 | 994 | ||
872 | 128 | ||
1000 | 0 |
Dimension | Compression Ratio | ||
---|---|---|---|
872 | 128 | ||
1000 | 0 | ||
1000 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Dong, B.; Yu, B.; Yu, Y. Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation. Axioms 2023, 12, 485. https://doi.org/10.3390/axioms12050485
Zhao X, Dong B, Yu B, Yu Y. Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation. Axioms. 2023; 12(5):485. https://doi.org/10.3390/axioms12050485
Chicago/Turabian StyleZhao, Xinzhu, Bo Dong, Bo Yu, and Yan Yu. 2023. "Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation" Axioms 12, no. 5: 485. https://doi.org/10.3390/axioms12050485
APA StyleZhao, X., Dong, B., Yu, B., & Yu, Y. (2023). Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation. Axioms, 12(5), 485. https://doi.org/10.3390/axioms12050485