Inequalities for the Windowed Linear Canonical Transform of Complex Functions
Abstract
:1. Introduction
2. Preliminary
3. Inequalities Associated with the WLCT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osipenko, K.Y. Inequalities for derivatives with the Fourier transform. Appl. Comput. Harmonic. Anal. 2021, 53, 132–150. [Google Scholar] [CrossRef]
- Grunbaum, F.A. The Heisenberg inequality for the discrete Fourier transform. Appl. Comput. Harmonic. Anal. 2003, 15, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Lian, P. Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 2020, 148, 697–703. [Google Scholar] [CrossRef] [Green Version]
- De Carli, L.; Gorbachev, D.; Tikhonov, S. Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 2017, 33, 789–808. [Google Scholar] [CrossRef] [Green Version]
- Nicola, F.; Tilli, P. The Faber-Krahn inequality for the short-time Fourier transform. Invent. Math. 2022, 230, 1–30. [Google Scholar] [CrossRef]
- Johansen, T.R. Weighted inequalities and uncertainty principles for the (k, a)-generalized Fourier transform. Int. J. Math. 2016, 27, 1650019. [Google Scholar] [CrossRef]
- Hardin, D.P.; Northington V, M.C.; Powell, A.M. A sharp balian-low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmonic. Anal. 2018, 44, 294–311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.C.; Han, Y.P.; Sun, Y.; Wu, A.Y.; Shi, X.Y.; Qiang, S.Z.; Jiang, X.; Wang, G.; Liu, L.B. Heisenberg’s uncertainty principle for n-dimensional fractional fourier transform of complex-valued functions. Optik 2021, 242, 167052. [Google Scholar] [CrossRef]
- Kou, K.I.; Xu, R.H. Windowed linear canonical transform and its applications. Signal Process. 2012, 92, 179–188. [Google Scholar] [CrossRef]
- Wei, D.Y.; Hu, H.M. Theory and applications of short-time linear canonical transform. Digit Signal Process. 2021, 118, 103239. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principles for the short-time linear canonical transform of complex signals. Digital Signal Process. 2021, 111, 102953. [Google Scholar] [CrossRef]
- Atanasova, S.; Maksimovic, S.; Pilipovic, S. Characterization of wave fronts of Ultradistributions using directional short-time Fourier transform. Axioms 2022, 10, 240. [Google Scholar] [CrossRef]
- Tao, R.; Deng, B.; Wang, Y. Fractional Fourier Transform and Its Applications; Tsinghua University Press: Beijing, China, 2009. [Google Scholar]
- Bahri, M.; Ashino, R. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 2016, 14, 1650015. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhang, K.; Chai, Y.; Xu, S.Q. Computation of the short-time linear canonical transform with dual window. Math. Probl. Eng. 2017, 2017, 4127875. [Google Scholar] [CrossRef] [Green Version]
- Kou, K.I.; Xu, R.H.; Zhang, Y.H. Paley-Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 2012, 35, 2122–2132. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two-dimensional signals. Adv. Appl. Clifford Algebras 2020, 30, 16. [Google Scholar] [CrossRef]
- Kumar, M.; Pradhan, T. A framework of linear canonical transform on pseudo-differential operators and its application. Math. Methods Appl. Sci. 2021, 44, 11425–11443. [Google Scholar] [CrossRef]
- Xu, T.Z.; Li, B.Z. Linear Canonical Transform and Its Applications; Science Press: Beijing, China, 2013. [Google Scholar]
- Wolf, K.R. Integral Transforms in Science and Engineering; Plenum Press: New York, NY, USA, 1979. [Google Scholar]
- Dang, P.; Deng, G.T.; Qian, T. A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 2013, 61, 5153–5164. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Convolution theorem involving n-dimensional windowed fractional Fourier transform. Sci. China Inf. Sci. 2021, 64, 169302:1–169302:3. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Octonion short-time Fourier transform for time-frequency representation and its applications. IEEE Trans. Signal Process. 2021, 69, 6386–6398. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-W.; Gao, W.-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms 2023, 12, 554. https://doi.org/10.3390/axioms12060554
Li Z-W, Gao W-B. Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms. 2023; 12(6):554. https://doi.org/10.3390/axioms12060554
Chicago/Turabian StyleLi, Zhen-Wei, and Wen-Biao Gao. 2023. "Inequalities for the Windowed Linear Canonical Transform of Complex Functions" Axioms 12, no. 6: 554. https://doi.org/10.3390/axioms12060554
APA StyleLi, Z. -W., & Gao, W. -B. (2023). Inequalities for the Windowed Linear Canonical Transform of Complex Functions. Axioms, 12(6), 554. https://doi.org/10.3390/axioms12060554